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Abstract

Compositionality lies at the core of abstraction: local windows on a problem can be combined into a global
understanding of it; models and code can be written so that parts can be reused or replaced without break-
ing the whole; problems can be solved by combining partial solutions. Compositionality may give algorithmic
advantages as well. This is the case of divide-and-conquer algorithms, which use the compositional struc-
ture of problems to solve them efficiently. Courcelle’s theorems are a remarkable example. They rely on a
divide-and-conquer algorithm to show that checking monadic second order formulae is tractable on graphs
of bounded tree or clique width.

The idea behind fixed-parameter tractability results of this kind is that divide-and-conquer algorithms
are efficient on inputs that are structurally simple. In the case of graphs, tree and clique widths measure
their structural complexity. When a graph has low width, combining partial solutions on it is tractable. This
work aims to bring the techniques from parametrised complexity to monoidal categories.

This thesis introduces monoidal width to measure the structural complexity of morphisms in monoidal
categories and investigates some of its properties. By choosing suitable categorical algebras, monoidal width
captures tree width and clique width. Monoidal width relies on monoidal decompositions in the same way
graph widths rely on graph decompositions and graph expressions. Monoidal decompositions are terms in
the language of monoidal categories that specify the compositional structure needed by divide-and-conquer
algorithms. A general strategy to obtain fixed-parameter tractability results for problems on monoidal cat-
egories highlights the conceptual importance of monoidal width: compositional algorithms make functorial
problems tractable on morphisms of bounded monoidal width.






Kokkuvote

Kompositsioonilisus on abstraktsiooni juures tsentraalne: ilesande moistmise osade kaupa saab kokku panna
selle tervikuna moistmiseks; mudeleid ja koodi saab arendada nii, et nende osi on véimalik asendada voi
taaskasutada tervikut rikkumata; tilesande terviklahendus on leitav osalahendusi kombineerides. Komposit-
sioonilisus voib anda ka algoritmilisi eeliseid. Nii on naiteks jaga-ja-valitse algoritmidega, mille puhul Ule-
sande efektiivseks lahendamiseks kasutatakse &ra selle kompositsioonilist struktuuri. Uheks viljapaistvaks
naiteks sellest on Courcelle'i teoreemid. Need pohinevad jaga-ja-valitse algoritmil ning naitavad, et mon-
aadiliste teist jarku valemite kontroll on praktiliselt arvutatav nendel graafidel, mille puu- voéi klikilaius on
tokestatud.

Taoliste fikseeritud parameetritega praktilise arvutatavuse tulemuste aluseks on asjaolu, et jaga-ja-valitse
algoritmid on téhusad struktuurselt lihtsate sisendite korral. Graafi puu- ja klikilaius méodavad selle struktu-
urset keerukust ning kui graafi laius on vaike, on osalahenduste kombineerimine praktiliselt arvutatav. Siinne
t60 Uritab tuua parametriseeritud keerukuses kasutatavad votted monoidilisse kategooriateooriasse.

Kaesolev doktoritd6 toob sisse monoidilise laiuse mdiste, et médta morfismide struktuurset keerukust
monoidilistes kategooriates, ning uurib moningaid selle omadusi. Valides sobiva kategoorsed algebrad, on
monoidiline laius puu- ja klikilaiuse vasteks. Monoidiline laius péhineb monoidilistel dekompositsioonidel
samal viisil, nagu graafilaiused pohinevad graafi-dekompositsioonidel ning graafiavaldistel. Monoidilised
dekompositsioonid on termid monoidiliste kategooriate keeles, mis kirjeldavad jaga-ja-valitse algoritmidele
vajaliku kompositsioonilise struktuuri. Uldine strateegia monoidiliste kategooriate iilesannetel fikseeritud
parameetritega praktilise arvutatavuse tulemuste saamiseks toob esile monoidilise laiuse kontseptuaalse
olulisuse: kompositsioonilised algoritmid muudavad funktoriaalsed (ilesanded praktiliselt arvutatavaks t6-
kestatud monoidilise laiusega morfismidel.
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Chapter 1

Introduction

Famously, Caesar used to say “divide et impera”, divide and conquer, as a strategy to overcome enemies.
This strategy is sometimes also useful to design algorithms. When the input has a simple structure, solving
the problem on its components and then combining the solutions may be more efficient than solving it on
the input as a whole. One of the most famous results in parametrised complexity, Courcelle’s theorem, relies
on a divide-and-conquer algorithm to bound the time complexity of solving a class of problems on graphs.

1.1 Fixed-parameter tractability

Parametrised complexity studies computational complexity of problems depending on parameters. The
problems that are tractable for given choices of the parameter are called fixed-parameter tractable. Cour-
celle’s theorem [Cou92a] is one of the most famous results in this field, and shows fixed-parameter tractabi-
lity of checking monadic second order formulae on graphs. This is a hard problem in general, but becomes
tractable when the input is restricted to belong to a class of bounded-width graphs.

There are similar results for different notions of width for graphs [Cou92a; CMR0OO; CO00]. We will be
concerned with the general structure of these results rather than their details. They all rely on a decompo-
sition algebra for graphs to determine the corresponding graph width. A decomposition algebra is a set of
operations and a set of generators that allow graphs to be expressed as terms. Each operation has a cost and
each term is priced according to the most expensive operation in it. Different terms may express the same
graph and have different costs. The width of a graph is the cost of one of its cheapest terms.

The second ingredient for fixed-parameter tractability results like Courcelle’s is a preservation theorem.
Given a decomposition algebra for graphs and a logic for them, a preservation theorem states that the op-
erations preserve logical equivalence. As a consequence, given a term for a graph, the value of a formula
on it can be determined compositionally. This computation is tractable when the input graphs are restricted
to a bounded-width class because combining partial solutions takes constant time in the size of the input
graph. A famous result of this kind is the Feferman-Vaught-Mostowski theorem [Fef57; FV59] that shows, via
Ehrenfeucht-Fraissé games [Fra55; Fra57; Ehr57; Ehré1], that the disjoint union of graphs preserves monadic
second order logical equivalence.

Each fixed-parameter tractability result for checking monadic second order formulae on graphs relies on
its own decomposition algebra and relative preservation theorem. The Courcelle-Makowsky theorem [CMO02;
Mak04] summarises the common technique to all these results. It assumes the existence of a decomposition
algebra and a corresponding preservation theorem, which is the difficult part to show, and deduces fixed pa-
rameter tractability of checking formulae on graphs. This result is an almost straightforward consequence of
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its assumptions but highlights the common proof structure to the mentioned graph fixed-parameter tracta-
bility results.

The insight that led to these results is the expression of graphs as terms. The graph widths defined by
operations and generators had already been defined combinatorially [R583; R$86; R591; 0S06] and led to
fundamental results in graph theory and combinatorics, such as the famous Robertson and Seymour graph
minor theorem [RSO4]. However, the algebraic perspective on them gave the possibility to take advantage
of graph decompositions to obtain algorithmic results. We bring these insights to the world of monoidal
categories, where we define monoidal decompositions and the relative monoidal width. We show that com-
positional algorithms make functorial problems tractable on morphisms of bounded monoidal width.

Monoidal categories often serve as semantic universes for programs. Depending on the additional struc-
ture and properties of the chosen monoidal category, its morphisms may represent different kinds of com-
putations, either classical [Lam86] or with effects [Gui80; Mog91]. With these models, program verification
may be done compositionally and one may be able to obtain fixed-parameter tractability results.

For graph decompositions, different sets of operations may define the same width, while for monoidal
decompositions, the choice of monoidal category determines the decomposition algebra: the operations are
compositions and monoidal product. These are the canonical choice among all the possible operations that
define equivalent width measures.

1.2 Monoidal decompositions

We define monoidal decompositions and monoidal width mimicking Courcelle’s algebraic decompositions of
graphs and their width. While for graphs the choice of operations determines the decomposition algebra, for
monoidal decompositions it is the choice of monoidal category that determines, canonically, the operations:
compositions and monoidal product. A monoidal decomposition of a morphism in a monoidal category is an
expression of this morphism in terms of compositions and monoidal products of “smaller” morphisms.
There may be different monoidal decompositions of the same morphism, some more efficient than oth-
ers, and monoidal width measures the cost of a most efficient decomposition. The cost of a decomposition
depends on the operations that appear in it and their cost. The composition of two morphisms may repre-
sent running two processes one after the other with some information passed along a channel from the first
process to the second, or it may represent running two processes that have access to the same resource and
need to synchronise along a common boundary to access the resource. Resource sharing, synchronisation
and information sharing are costly operations and their cost increases with the size of the common boundary.
We assign to composition operations a cost that increases with the size of the shared boundary. On the other
hand, monoidal products usually represent running processes in parallel, without communication. Monoi-
dal products are, thus, usually, cheap operations with constant cost. With these choices, monoidal width
incentivises parallelism: highly parallelised monoidal decompositions will be cheaper that highly sequential
ones. The monoidal decompositions in Figure 1.1 exemplify this phenomenon. The monoidal decomposition
on the left cuts the morphism along 4 wires, while the biggest cut in the one on the right is along 2 wires.

Figure 1.1: An inefficient (left) and an efficient (right) monoidal decompositions.
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We study monoidal width in two categorical algebras of graphs. We give syntactic presentations of them
in terms of generators and equations. The algebra of discrete cospans of graphs is equivalent to the prop
generated by a Frobenius monoid with an added “edge” generator. The algebra of graphs with dangling edges
is equivalent to the prop generated by a bialgebra with an added “vertex” generator. We show that Cour-
celle’s operations for tree width derive from compositions and monoidal product in the monoidal category
of Frobenius graphs, while those for rank width and clique width derive from compositions and monoidal
product in the monoidal category of bialgebra graphs. In fact, we show that monoidal width in the first of
these categories is equivalent to tree width, while, in the second, it is equivalent to clique width.

Inspired by the Courcelle-Makowsky analogous result for graphs [CM02; Mak04], we conclude by giving
a general strategy for showing fixed-parameter tractability of problems on monoidal categories. The choice
of decomposition algebra is given by fixing a monoidal category of inputs. The structural part of the preserva-
tion theorems corresponds to functoriality of the mapping from inputs to solutions, and the computational
part of these results bounds the cost of combining partial solutions. Composing two partial solutions needs
to be linear in the size of the components, but it can be arbitrarily complex in the size of the common bound-
ary. These conditions make computing solutions efficient on inputs of bounded monoidal width.

1.3 Related work

Since the first definitions of graph decompositions and relative widths, there have been two main approaches
to them. A more combinatorial one, where decompositions are combinatorial objects, paths or trees with
additional data, and a more algebraic one, where decompositions are terms that express graphs as the re-
sult of operations applied to generators. Some of the first combinatorial approaches to graph widths define
tree decompositions [BB73; Hal76], which proved fundamental for Robertson and Seymour’s graph minors
series [RS83] that culminated with the proof of the graph minors theorem [RS04]. This result shows a com-
binatorial property of graphs: they are well-quasi-ordered under the graph minor partial order. On the other
hand, the algebraic and syntactic approaches to graph decompositions led to results in complexity theory.
One of the earliest syntactic definitions of graph decompositions define them in terms of operations and
generators [PRS88]. This idea was rediscovered by Bauderon and Courcelle [BC87] and developed into Cour-
celle’s monadic second order logic of graphs series [Cou90]. This line of research led to fixed-parameter
tractability results for graphs [Cou92a; CO00; CKO9].

Mowshowitz and Dehmer’s review [MD12] give a thorough taxonomy of graph complexity measures,
while Bodlaender’s classical review [Bod93b] and a more recent one by Hlinény et al. [HIi+08] summarise
algorithmic applications of tree width and related widths.

As mentioned above, the algebraic approach to graph decompositions led to results in parametrised
complexity, but this is one of few examples where algebraic, or “structural”, methods have been adopted in
complexity theory. Considered the success of this perspective, other recent lines of research aim to bridge
the gap between algebraic methods and complexity results, to relate structure and power [AS21].

Graph grammars. Our work follows the syntactic approach to graph decompositions by Bauderon and
Courcelle [BC87]. This started the monadic second order logic of graphs series [Cou90] where syntactic
decompositions of graphs give the possibility to show fixed-parameter tractability of checking monadic sec-
ond order formulae on graphs. Different decomposition algebras define different classes of bounded-width
graphs. The first decomposition algebra defines tree width [BC87; Cou90] and leads to the relative fixed-
parameter tractability result [Cou92a]. Similar results hold for decomposition algebras defining clique width
and rank width [CER93; CO00; CKO7; CKO9]. These results share the proof structure, which is summarised
by Courcelle and Makowsky [CM02; Mak04]. We will recall definitions and results about these graph de-
compositions in Section 2.3 in detail.
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Although we will not refer to it later on, it is worth mentioning the twin width series [Bon+21] that recently
started an active line of research by defining a graph complexity measure that is stronger than the known
ones but still admits fixed-parameter tractable first-order model checking, twin width [Bon+21].

Game comonads. Another prolific approach to connect structure and power targets logic games. Logic
games are a common, if not the most common, technique to show preservation theorems. The proof of the
Feferman-Vaught-Mostowski preservation theorem [Fef57; FV59] relies on Ehrenfeucht-Fraissé games [Fra55;
Fra57; Ehr57; Ehr61] to show logical equivalence of structures. A logic game consists of two players, Spoiler
and Duplicator, that in turns choose vertices of two relational structures. Spoiler tries to show that the two
structures are not logically equivalent, while Duplicator’s goal is to show that they are. The details of the
moves of each player and the details of the rules of the game determine the logic fragment that defines
logical equivalence.

Game comonads are families of comonads on the category of relational structures and their homomor-
phisms that are indexed by a resource. For a game comonad C, the comonad C, associates to a relational
structure the relational structure of plays on it that use at most k resources. The type of resource determines
the type of logical equivalence of the corresponding game. Intuitively, the resource bounds the size of the
windows though which the relational structure can be looked at.

Game comonads unify logic games and their corresponding logical equivalence with graph widths, and
systematise these correspondences. For a game comonad C, the existence of a winning strategy for Duplica-
tor on structures G and H is witnessed by the existence of a coKleisli morphism or isomorphism C,(G) - H
and characterises logical equivalence for a specific logic fragment. Different comonads define logical equiva-
lence for different logical fragments [ADW17; AM21; AS21; OD21; MS22]. Widths are, instead, characterised by
the coalgebra number. The coalgebra number of a structure G with respect to a game comonad C is the min-
imum k for which C,, admits a G-coalgebra G — C,(G). The pebbling comonad defines tree width [ADW17],
the Ehrenfeucht-Fraissé comonad defines tree depth [AS21] and the pebble-relation comonad defines path
width [MS22].

The game comonad approach recovers classical results from finite model theory [Pai20; DJR21; AJP22]
and gives general strategies to obtain new ones [AR23]. In particular, Jakl, Marsden and Shah [JMS23] focus
on abstracting the Feferman-Vaught-Mostowski preservation theorems, an issue we do not touch upon.

Cospan decompositions. Blume et al. [Blu+11] noticed that the categorical algebra behind tree decompo-
sitions is that of cospans of graphs. Their work characterises path and tree decompositions in terms of path-
and tree-shaped colimits in the category of graphs and their homomorphisms. Following a similar intuition,
Bumpus, Kocsis and Master [BK21; Bum21; BKM23] generalised tree decompositions beyond graphs. The
starting point of this line of work is a characterisation of tree width in terms of Halin’s S-functions [Hal76].
These approaches define decompositions “globally”: they are functors whose domain determines the shape
of the decomposition.

1.4 Contributions and synopsis

This thesis defines monoidal width and investigates some of its properties. It is based on published work by
the author [DHS21; DS22; DS23].
e Monoidal width and monoidal decompositions are defined in Section 3.1.
e By choosing a suitable categorical algebra of graphs with vertex interfaces, Theorem 5.16 shows equiva-
lence of monoidal width with branch width and tree width.
o Similarly, Theorem 6.19 relies on a categorical algebra of graphs with edge interfaces to show equivalence
of monoidal width with rank width and clique width.
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e Theorem 4.44 provides a syntactic presentation of graphs with edge interfaces.

e Theorem 7.6 shows that functorial problems on morphisms in monoidal categories that admit a compo-
sitional algorithm (Definitions 7.1 and 7.4) are fixed-parameter tractable with parameter monoidal width.
This result mimicks the Courcelle-Makowsky result about fixed-parameter tractability of checking formu-
lae on relational structures.

Synopsis Chapter 2 gives some background on both category theory and graph decompositions. Section 2.1
recalls monoidal categories and props, while Sections 2.2 and 2.3 recall graph widths and their application to
fixed-parameter tractability results. In particular, we recall the definitions of tree width, branch width, clique
width and rank width, both the original combinatorial ones and the ones in terms of operations on graphs
and generators.

Chapter 3 introduces monoidal width and two simple examples. The definition of monoidal decomposi-
tions and monoidal width are in Section 3.1, and Sections 3.2 and 3.3 study monoidal width of coherent copy
morphisms and in categories with biproducts.

The main study case for monoidal decompositions are graphs. Chapter 4 recalls two categories where
morphisms are graphs with interfaces, one where the interfaces are vertices, in Section 4.1, and one where
the interfaces are edges, in Section 4.3. Graphs with vertex interfaces are discrete cospans of graphs and
can be syntactically presented by a Frobenius monoid with an added “edge” generator. Graphs with edge
interfaces are matrices quotiented by an equivalence relation and can be syntactically presented by a bialge-
bra with an added “vertex” generator. We show how compositions and monoidal products in the monoidal
category of Frobenius graphs express the operations for tree decompositions, while those in the monoidal
category of bialgebra graphs express the operations for rank and clique decompositions. Chapter 5 is dedi-
cated to showing that monoidal width in the monoidal category of Frobenius graphs is equivalent to branch
and tree widths, while Chapter 6 shows that monoidal width in the monoidal category of bialgebra graphs
is equivalent to rank and clique widths. These equivalences rely on constructing a monoidal decomposition
from a branch or rank decomposition and vice versa. As intermediate step between monoidal and graph
decompositions we construct inductive branch and rank decompositions.

Chapter 7 concludes with a version of the Courcelle-Makowsky theorem for fixed-parameter tractability
for problems on monoidal categories. Section 7.2 applies this result to the case of computing colimits in
presheaf categories.






Chapter 2

Background

This chapter introduces some background about monoidal categories and fixed-parameter tractability in the
attempt to make this work accessible from both the “structure” community studying category theory and the
“power” community studying computational complexity. Section 2.1recalls the definitions of monoidal cate-
gory and prop, and their string diagrammatic syntax and interpretation as theories of processes. Section 2.3
recalls relational structures, some preservation theorems and their consequences as fixed-parameter trac-
tability results.

2.1 Monoidal categories

Monoidal categories [Macé3] often serve as process theories. Depending on the additional properties and
structure on the chosen monoidal category, its morphisms may represent classical computations [Lam86;
JH90], computations with effects [Gui80; Mog91; AM99; CFS16; Rom23] or different kinds of computational
models, from automata [KSW97b; KSW97a; Di +23; Di +21a], to signal flow graphs [BSZ14; BSZ15] and da-
taflow computations [Oli84; Ste86b; Ste86a; KSW99; KSW02; UV08; MHH16; SK19; CVP21; DFR22; Gar23].
Similarly, they may represent processes of different kinds, like stochastic processes [Pan99; Fri20; Stal7;
Ste21; DR23], linear processes [BSZ17; Bon+19b; Bon+19a], partial processes [Car87; RR88; CO89; CLO7; Di
+21b], or quantum processes [ACO9; CS12; HV19]. Morphisms are depicted as boxes with input and output
wires. These wires are the objects, which specify the resources that can be transformed by processes.

A B
A 2
3

The categorical structure allows processes to be composed sequentially: for two morphisms f : A — B and
g: B — C, there is a composite morphism f §g: A — C that, usually, represent the process of executing

f first and then g.
4 c

The monoidal structure also allows morphisms to be composed in parallel: for two morphisms f: A - B
and f': A’ - B’, there is a composite morphism f ® f': A® A’ - B ® B’ that, usually, represent the
process of executing f and f’ at the same time.

{7}

7
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Both these composition operations have units. The identity morphisms 1 4 are the units for sequential com-
position: they represent the process that “does nothing” to a resource, so composing sequentially with the
identity morphism should not change the process.

The monoidal unit I is the unit for parallel composition: it represents “absence of resources”, so a process
that produces as outputs, or requires as inputs, a resource A and the monoidal unit I, it is essentially the
same as the same process only producing, or requiring, A. This reflects in the algebra of monoidal categories
with natural isomorphisms AQ I ~ A ~ I ® A. Some processes may not take any inputs, s : I — B, ordo

not produce any outputs,t: A — I.
5o

The string diagrammatic syntax is convenient because it hides the bureaucracy isomorphisms that ensure
associativity and unitality of the monoidal structure, and equations like functoriality of the monoidal product,
(fFRMsEe®g)=( 32 ®(f5¢g’) also become trivial in string diagrams.

4 c
A monoidal category is a category with extra structure, the monoidal product ® and monoidal unit I, subject

to coherence conditions given by natural transformations that witness associativity, «, and unitality, A and
p, of the monoidal structure.

Definition 2.1 ([Macé3]). Amonoidal category (C,®, I)is given by a category C, afunctor (—® =): CxC —
C and an object I of C with coherence natural isomorphisms a: (- ® (= ® =)) - (—-® =)® =), the
associator, A: (I ® —) — 1, the left unitor, and p: (— ® I) — 1, the right unitor, satisfying the pentagon
and triangle equations below.

AQ(B®C)® D)

1®apcp @4, (BRC),D LYW
/ \ A®NH®B —— AQU®B)

AQ®(BQ®(CQ® D)) (A®RBRC)®D \ /
PA®1 1®4p
aA,B,(C@D)\L \L"A,B,C@' A®B

A®B)®(C® D), —p (A®B)®C)® D

A monoidal category is strict if the coherence isomorphisms are identities.

Morphisms of monoidal categories are monoidal functors, which are functors that preserve the monoidal
structure.

Definition 2.2. A (strong) monoidal functor F: (C,®, 1) — (D, [X, J) between two monoidal categories is
a functor F: C — D between the underlying categories that respects the monoidal structure. This means
that there are natural isomorphisms e: J — F(I)and u: F(—) X F(=) - F(—® =) that are associative
and unital.

(F(A) X F(B)) K F(C) i) F(A) X (F(B) KX F(C))

\LMZW \Lﬂ Xu

(F(A® B)XF(C) F(AXF(BQ )

J b

F
(F(A® B)® C) # FAQ (B® C))
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X1 X1
J R FA) — FU)RFA) FARJ — FA)RFV)

lﬂF lﬂ l”“ lﬂ
F4) <——— FU®4) F(4) W FA®I)

F(4)

Locally small monoidal categories and monoidal functors form a monoidal category MonCat with the Carte-
sian product and the one-object category.

Example 2.3 (The monoidal category of hypergraphs). A hypergraph G = (V, E, ends) is a set of vertices V,
a set of edges E and a functionends : E — ¢o(V)'. Amorphism h: G — H of graphs is a pair of functions
hy: Vg = Vygand hp: E; — Ep that preserve the adjacency relation: hp § endsy = endsg § go(hy)).
Hypergraphs and their homomorphisms form a monoidal category UHGraph with the coproduct monoidal
structure where the monoidal product is component-wise disjoint union and the monoidal unit is the empty
graph.

The Coherence Theorem for monoidal categories [Mac78, Section VII.2] states that all well-typed equa-
tions between morphisms constructed only from «, 4, p and the categorical and monoidal structure hold. A
consequence of this result is the Strictification Theorem [Mac78, Section X1.3].

Theorem 2.4 (Strictification [Mac78]). Every monoidal category is monoidally equivalent to a strict one.

The Coherence and Strictification Theorems allow us to forget about associators and unitors when show-
ing equalities between morphisms.

Remark 2.5. Let C be a monoidal category, S be its strictification and let H: C - Sand A: S — C be
the strong monoidal functors giving the equivalence between them. The Coherence Theorem gives a unique
natural isomorphism ¢, : A = A(H(A)). For each morphism f: A — B in C, its image A(H(f)) does
not necessarily coincide with f, but f = ¢, § AH(f)) § q,’)l‘;l. This means that, every time we show an
equality u = v between morphisms u,v: X — Y in the strictification S, we can deduce that f = g,
for all objects A and B and morphisms f,g: A — B in C such that H(f) = u and H(g) = v, because
f=ds5AM);3 q’)El =¢,45A0) d); = g. In particular, a syntax for strict monoidal categories gives a syntax
for monoidal categories.

Example 2.6 (The monoidal category of monoidal signatures). A monoidal signature > = E = V*isa
set of types V, a set of generators E, and source and target functions s,t: E — V™ that associate to
each generator the types of its inputs and outputs. A monoidal signature is one-sorted if V' contains only
one element. A morphism h: £ — X’ of monoidal signatures is a pair of functions A, : V — V' and
hg: E — E'that preserve the inputs and outputs: h§s" = s$hj, and h 51’ = t§hj,. Monoidal signatures
and their morphisms form a monoidal category MonSig where monoidal product is disjoint union. This is the
comma category (1 | L) for the identity functor and the functor L : V' — V* x V*. One-sorted monoidal
signatures form a full subcategory 1MonSig of MonSig.

Given a monoidal signature X, a string diagram over X is obtained by composing sequentially or in parallel
some of the generators in X. String diagrams are a convenient and formal syntax for monoidal categories.
More precisely, there is an adjunction between the category MonSig of monoidal signatures and the category
MonCat of monoidal categories, where the free monoidal category on a monoidal signature X is given by
string diagrams on X [J591, Theorem 1.2]. See Selinger’s survey [Sel11] for an overview of string diagrammatic
calculi.

Theorem 2.7 ([JS91]). String diagrams on a monoidal signature X form a strict monoidal category and, in
fact, the free strict monoidal category on X.

"We indicate with g the covariant powerset functor.
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Symmetric monoidal categories are monoidal categories equipped with processes ~<_, the symmetries,
that permute the order of resources. This family of processes is compatible with the monoidal structure,

A C A C
A®B C A B®C
>< = B A and >< = B A,
C AQB B®C A
C B (o B

it defines a natural transformation,
’ b _a~ i o
"0 e b
B B B B

Definition 2.8. A braided monoidal category is a monoidal category (C, ®, I) with a natural isomorphism
c: (-® =) — (= ®-) thatis compatible with the monoidal product.

and it is an isomorphism,

AR(BRC) —2% U B&C A®B®C 3 Ae(BEO)
1 ®63,cl/ l/"A@B,C O'A,B®ﬂl/ \LO'A,B@)C
A®(C®B) C®(A®B) (B®A)®C (BRCO)® A
| s | L
<A®c>®3(m<C®A>®B B®(A®C)m3®(C®A)

A braided monoidal category is symmetric if the inverse of 6 4 giso g 4.

Example 2.9. The monoidal category of graphs is symmetric with the obvious isomorphism lifted from the
category Set of sets and functions.
Symmetric monoidal functors are monoidal functors that preserve the symmetries.

Definition 2.10. A braided monoidal functor F : C — D between braided monoidal categories (C, ®, I) and
(D,[X, J) is a monoidal functor that respects the braiding.

F(A) X F(B) i) F(B) I F(A)

H \Lﬂ
\L F(o)
F(A® B) —— F(B® A)
A symmetric monoidal functor is a braided monoidal functor between symmetric monoidal categories. Lo-

cally small symmetric monoidal categories and symmetric monoidal functors form a symmetric monoidal
category SymMonCat.

Coherence for symmetric monoidal categories [Mac78, Section XI.1] ensures that all well-typed equations
between morphisms that have the same underlying permutation and are constructed only from a, 4, p, ¢
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and the categorical and monoidal structure hold. The strictification S of a symmetric monoidal category C is
also symmetric and the symmetry on S is defined as

Hy™! Hoy Hu
AR B>2HAA®B) - HAMU QA(B) - HAB)®AA) > HABRA)2BRA.

Given a monoidal signature X, a string diagram with symmetries over that signature is a string diagram
over X where wires are allowed to be permuted. String diagrams with symmetries are a convenient and for-
mal syntax for symmetric monoidal categories. More precisely, there is an adjunction between the category
MonSig of monoidal signatures and the category SymMonCat of symmetric monoidal categories, where the
free symmetric monoidal category on a monoidal signature X is given by string diagrams with symmetries
over X [JS91, Theorem 2.3].

Theorem 2.11 ([JS91]). String diagrams with symmetries on a monoidal signature X form a symmetric strict
monoidal category and, in fact, the free symmetric strict monoidal category on X.

Props and finitely presented props

When a process theory only has one resource or there is no interest in recording the distinction between
the resources, the only relevant information about the inputs and outputs of processes is their number.
Props [Mac65] provide an algebra for these “untyped” process theories. They are symmetric strict monoidal
categories where the objects are natural numbers and morphisms n — m represent processes with n inputs
and m outputs.

Definition 2.12. A prop is a symmetric strict monoidal category whose objects are natural numbers, the
monoidal product on them is addition and monoidal unit is 0.

Example 2.13. The skeleton of the category FinSet of finite sets and functions is a prop.

Definition 2.14. A homomorphism of props is an identity-on-objects symmetric strict monoidal functor. Props
and their homomorphisms form a category Prop that is a subcategory of SymMonCat.

Some props can be presented by a finite set of generators because the adjunction between monoidal
signatures and symmetric monoidal categories restricts to an adjunction between the category of one-sorted
monoidal signatures 1TMonSig and the category Prop of props. As a consequence, the morphisms of free
props are one-sorted string diagrams with symmetries.

Some theories impose equations on their processes. For example, multiplying by the neutral element
needs to return the input as it is, so the theory of commutative monoids, in Figure 2.1, is presented by two
generators, the multiplication o>—: 2 — 1andtheunito—: 0 — 1, subject to equations that ensure unitality,
associativity and commutativity. Formally, this prop is a coequaliser: if we indicate with M, the free prop on
the generators {_>—,o—}, with E the free prop on three generators {u: 1 - 1,a: 3 - 1,¢: 2 - 1}, and
withLr : E — M, the prop morphisms that point to the left- and right-hand sides of the three equations in
Figure 2.1,

I(u):= % r(u):=———
o= X >— re= o—
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the prop that gives the theory of commutative monoids M is the coequaliser of 1 and r in Prop:

Lr q
E3M;—> M.

Example 2.15 ([LacO4]). The skeleton of the category FinSet of finite sets and functions is presented by a
commutative monoid (Figure 2.1).

> o—
S 2 X

Figure 2.1: Generators and equations for a monoid.

Any prop S contains the initial prop Py of permutations as subprop. This determines two prop morphisms
1: Po®S — Sandr: S®P; — Sby pre-and post-composition because Py = P,°P. The composition S®p T
of two props S and T is the coequaliser of Ig ® landr ® 1.

TQLr®1
S®P®T = S®T->S®p T

Composite props are characterised by factorisations of their morphisms. This result will be useful to show
the syntactic presentations of the props in Section 4.3.

Theorem 2.16 ([LacO4, Theorem 4.6]). LetR, S and T be props with prop morphismsig: S - Randi;: T —
R. Suppose that any morphism r: m — nin R can be written as a composition r = 1g(s) § 17(¢) for some
s: m— pinSandsomet: p — ninT, uniquely up to permutations o : p — p. Then, R is the composite of
S and T via a distributive law A : T ®p, S-S ®p, T that associates to a pair (¢ | s) the pair (5 | f), where

15(8) § 17(f) is the unique factorisation of 11(t) § 15(s).
As explained in detail in Zanasi’s PhD thesis [Zan15, Proposition 2.27], when composing finitely presented
props, the distributive law A gives the additional equations that determine the composite theory: for each

pair (t | s)inT ®p, S, we add the equation 11(7) § 15(s) = 15(3) § 11(7). In other words, the composed prop
S ®p, T is the coequaliser

Lr
T®POS :;S+T-->S®pOT
of the prop morphisms 1 and r defined by

1(7 | 5):=11(7) § 15(s) and r(t | s):=15(8) 5 17() .

Coproducts of props are particular cases of prop compositions where the distributive law does not add
any extra equation: the set of equations of the coproduct of two props is the disjoint union of the sets of
equations of the components.

Proposition 2.17 ([Zan15, Proposition 2.11]). Let P; and P, be two props presented by generators and equa-
tions (X, E;) and (%,, E,). Then, their coproduct P, + P, is presented by the disjoint union of the generators
and equations of P, and P,, (Z; U X,, E| U E,).
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2.2 Graph complexity measures

Several important applications of model checking reduce to deciding whether a formula ¢ is true in a graph
or, more generally, in a relational structure G.

GE¢

This problem is hard in general, even when the formula ¢ is fixed. For example, for monadic second order
logic and every level Zf of the polynomial hierarchy, there are formulae and classes of structures that make
the model checking problem complete for ZiP [MP96]. However, when the input graph is structurally simple,
monadic second order formulae can be checked efficiently.

The structural complexity of graphs may be measured in different ways and different measures may de-
fine different classes of “simple” graphs. Tree width and clique width are some of the most famous measures
of this kind: classes of graphs with bounded clique width might not have bounded tree width. This section
recalls these graph complexity measures and two equivalent ones, while the next shows how they serve the
design of efficient model checking algorithms.

All these graph widths rely on a corresponding notion of decomposition that indicates how graphs can
be split in smaller subgraphs according to some specific rules. There may be different decompositions of the
same graph and some of them may be more efficient than others. The width of a graph is the complexity of
the most efficient decompositions.

We recall the definitions of graphs, hypergraphs and relational structures.

Definition 2.18. An undirected (multi-)hypergraph G = (V, E, ends) is determined by a functionends : E —
(V) that assigns to each edge e € E a set of vertices ends(e) C V, the endpoints of e. An undirected
(multi-)graph is a hypergraph where all the edges have at most two endpoints.

Note that, with this definition, edges in a hypergraph can have multiple endpoints or none, and there
can be parallel edges between the same vertices.

Relational structures can be described as generalised hypergraphs where the vertices can be connected
by different “types” of edges. A relational signature fixes a set of types for the edges.

Definition 2.19. A relational signature is a set = of relational symbols with a specified arity « : 7 = N.

We will write finite relational signatures as sets of pairs 7 = {(R, ay), ..., (R,, a,)}, where a; := a(R;).

Example 2.20. The relational signature for graphs contains a single relation of arity 2, z,, = {(E,2)}, that
specifies which vertices are connected by an edge, while that for hypergraphs contains a relation for each
arity n, ), = {(E,, n) : n € N}, that specify which sets of vertices are connected by a hyperedge.

Definition 2.21. For a relational signature 7, a relational t-structure G is a set V' of vertices with an a z-ary
relation R¢ C V& for each relational symbol R of arity a g in the signature 7.

Example 2.22. Graphs and hypergraphs can be encoded as relational structures for the signatures z,, and
Thyp defined in Example 2.20. In principle, relational symbols are ordered, but we can restrict to unordered
relational structures.

While we will work with relational structures, we focus on hypergraphs for defining graph decomposi-
tions. This distinction does not matter because tree and branch decompositions do not depend on the labels
of the relational structures or on the order in which the vertices are related by a relational symbol. In fact,
the tree and branch widths of a relational structure coincide with the tree and branch widths of its underly-
ing hypergraph. We fix some graph theoretic nomenclature. Trees and, in particular, subcubic trees are part
of the data of tree and branch decompositions.
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Definition 2.23. Two distinct vertices v, w € V are neighbours in a hypergraph G if they are both endpoints
of the same edge e € E, v, w € ends(e). A path in G is a sequence of vertices (v, ..., v,) with a sequence
of distinct hyperedges (ey, ... ,e,_;) such that v;, v;, | € ends(e;) are both endpoints of the hyperedge e;, for
everyi=1,...,n— 1. Acyclein G is a path where the first vertex v, coincides with the last one v,,.

Definition 2.24. A hypergraph is connected if there is a path between any two vertices. A tree is a connected
acyclic graph. A subcubic tree is a tree where every vertex has at most three neighbours. Vertices with one
neighbour are the leaves.

Tree width and branch width

Tree width and branch width are equivalent graph complexity measures which, intuitively, measure how tree-
like a graph is. This section recalls tree width and branch width for undirected multi-hypergraphs, which we
will simply call hypergraphs.

Tree width. Tree width, introduced by Robertson and Seymour [RS86, Section 1], measures the structural
complexity of relational structures by comparing their structure to trees. In fact, forests have tree width 2,
while the family of cliques has unbounded tree width. Tree width is based on tree decompositions, which
specify a way of aggregating the vertices of a graph in a tree shape. This information is recorded in a tree
whose nodes are labelled by sets of vertices in the graph, called bags. The conditions on the bags ensure
that they respect the shape of the tree.

Definition 2.25. A tree decomposition of a hypergraph G = (V, E) is a pair (Y, t) of a tree Y and a function

t: vertices(Y) — g(V) such that:

1. Every vertex v is in at least one of the bags (i), Uievemces(y) ti)y=V.

2. For every edge e € E thereisanodei € vertices(Y') whose bag #(i) contains all the endpoints ends(e) of
e.

3. The subgraphs induced by the bags are glued in a tree shape, i.e. the intersection of any two bags #(i)
and t(k) is contained in all the bags #(j) corresponding to nodes j € vertices(Y) that are on the path
between i and k on the tree Y.

A tree decomposition of a relational z-structure is a tree decomposition of its underlying undirected hyper-

graph.

Example 2.26. A tree decomposition of a hypergraph G = (V, E) is a tree Y with a labelling ¢ of its nodes.
Every node i € vertices(Y) induces the subgraph G[t(i)] of G on the bag t(i). We draw the decomposition
(Y, 1) as a tree where the nodes are bubbles containing the subgraphs G[z(i)] of G induced by the bags #(i).

The width of a tree decomposition (Y, 1) of a graph G is the number of vertices in the biggest bag. Intu-
itively, it is the maximum number of vertices that need to be “hidden” in a bag to obtain a tree shape from
the graph. The cost of the decomposition in Example 2.26 is 3 as all the bags contain three vertices. Different
decompositions can have different widths, but the tree width of a graph is the width of a minimal one.
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Definition 2.27. Given a tree decomposition (Y, t) of a graph G, its width is the maximum cardinality of its
bags, wd(Y, ) 1= maX;eyertices(v) |1(i)|- The tree width of G is given by the min-max formula:

twd(G) := minwd(Y, ).
wd(G) {g{3W(,)

Note that Robertson and Seymour subtract 1 from twd(G) so that trees have tree width 1. To minimise
bureaucratic overhead, we ignore this and, according to this convention, trees and forests have tree width
2, while the clique on n vertices has tree width n.

Remark 2.28. The Gaifman graph of a hypergraph is the graph obtained by replacing every hyperedge with
n endpoints by an n-clique. The tree width of a hypergraph is the same as the tree width of its Gaifman graph
because the tree width of an n-clique and the tree width of a hypergraph on n vertices that are all connected
by a single edge are both n.

Branch width. Branch width was introduced by Robertson and Seymour as alternative to tree width [R591,
Section 4]. While a tree decomposition splits a graph into subgraphs, a branch decomposition imposes that
these subgraphs contain only one edge. Intuitively, this should not matter. In fact, the corresponding com-
plexity measure, branch width, is equivalent to tree width.

Definition 2.29. The hyperedge size of a relational z-structure G is the maximum arity of the relations with
non-empty interpretation: y(G):= max ey ag. The hyperedge size of a relational signature 7 is the maxi-
mum arity of its symbols: y(7):= maxgc, ag.

Theorem 2.30 ([RS91, Theorem 5.1]). Branch width is equivalent to tree width. More precisely, for a hyper-
graph G,

max{bwd(G), y(G)} < twd(G) < max{ %bwd(G), y(G), 1} .

A branch decomposition is a tree where the leaves are in bijection with the edges of the graph. If this
tree had a root, a branch decomposition would be a recipe for successively splitting the graph in two parts
along its vertices until both parts contain only one edge.

Definition 2.31. A branch decomposition of a hypergraph G = (V, E) is a pair (Y, b) of a subcubic tree Y
and a bijection b : leaves(Y) = E between the leaves of Y and the edges of G. A branch decomposition of
a relational z-structure is a branch decomposition of its underlying hypergraph.

Example 2.32. If we choose an edge of Y to be the starting point of the decomposition, we can extend the
labelling to the internal vertices of the tree by labelling them with the gluing of the labels of their children.
In this way, a branch decomposition is a way of splitting a graph by cutting along its vertices.
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Each splitting of the graph cuts along some vertices, as shown in Example 2.32 and each edge e in the
tree Y determines a splitting of the graph. More precisely, it determines a 2-partition of the leaves of Y,
which, through b, determines a 2-partition { A,, B, } of the edges of G. This corresponds to a splitting of the
graph G into two subgraphs G| and G,. Intuitively, the order of an edge e is the number of vertices that G,
and G, have in common as subgraphs of G. Given the partition {A,, B,} of the edges of G, we say that a
vertex v of G separates A, and B, whenever there are an edge in x € A, and an edge in y € B, that are
both adjacent to v: v € ends(A,) N ends(B,).

Definition 2.33. The order of an edge e in a branch decomposition (Y, b) of a hypergraph G is the number
of vertices that separate A, and B,: ord(e):= |ends(A4,) N ends(B,)|.

In Example 2.32, there is only one vertex separating the first two subgraphs of the decomposition. This
means that the corresponding edge in the decomposition tree has order 1. The width of a decomposition
is the maximum number of vertices in all cuts. The branch width of a graph is the width of a most efficient
decomposition.

Definition 2.34. The width of a branch decomposition (Y, b) of a hypergraph G = (V, E) is the maximum
order of its edges, wd(Y, b) := MaX,cedges(v) Ord(e). The branch width of a hypergraph G is given by the
min-max formula:

bwd(G):= minwd(Y, b) .
wd(G) {?,IBW(’)

Clique width and rank width

Cligue width and rank width are equivalent graph complexity measures that are “stronger” than tree width
and branch width: every graph of bounded tree width has bounded clique width but vice-versa is not true.
This section recalls cliqgue width and rank width for undirected multi-graphs.

Clique width. In the same way that trees are simple according to tree width, cliques, and cographs more
generally, are simple according to clique width. Clique decompositions, introduced by Courcelle, Engelfriet
and Rozenberg [CER93; CO00], have a more algebraic flavour compared to the combinatorial definitions of
tree and branch decompositions. They are terms formed by some operations and constants that specify
a graph where the vertices have labels. The operations can rename the labels, create edges and take the
disjoint union of graphs. The constants create a single 1-labelled vertex or the empty graph.

Definition 2.35. An n-labelled graph (G, [)is agraph G = (E, V) with alabelling function/: VvV — {1,...,n}.
e The generating graphs are the 1-labelled empty graph, @, and the graph v, with a single 1-labelled vertex.
e The renaming of labels Rename"i_q. of an n-labelled graph (G, I) is the graph (G, I"), where the vertices

with label i now have label j: I'(v) = I(v) if I((v) # i and I'(v) = j if [(v) = i.

e The edge creation Edge",-’j of an n-labelled graph (G, I) is the n-labelled graph (G’, 1) with extra edges
between the vertices with label i and those with label ;.

e The disjoint union + of an n-labelled graph (G, ) and an n’-labelled graph (G’, ') is the n + n’-labelled
graph (G + G',1 + ) given by the disjoint union of graphs and their labelling functions. Note that the
labelling function [ + I’ reindexes the labels of G': [ + I'(v'):=n + I'(v) for a vertex v/ of G’, while
[ +1I'(v):=I(v) for a vertex v of G.

Our treatment of labels slightly differs from the one in [CO00] but equivalent to it up to renaming of la-
bels, and it is closer to the categorical algebra that we will introduce in Section 4.3. To be precise, we should
define separately the syntactic operations and their semantics, but, for brevity, we presented them together.
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In Section 4.3, we will derive these operations from compositions and monoidal product in a monoidal cate-
gory where graphs are morphisms. There, the difference between the syntactic operations and the semantic
ones is clear: they belong to different, but equivalent, monoidal categories.

A clique decomposition is a syntax tree where the internal nodes are the operations and the leaves are
the constants in Definition 2.35.

Definition 2.36. A clique decomposition t € T, of a graph G is a term constructed with the operations and
constants in Definition 2.35.

roi= (G) ifG=0,orG=v,
| Rename”i_)j(t') if G = Rename"l._)j(G') and? € Ty
| Edge"; (1) if G = Edge”; ;(G')and 1’ € Ty,
| t1+t2 ifG:G1+G23ndtieTGi

Example 2.37. The 1-labelled 4-clique is expressed by the term
Rename22_>1 Edge21’2(Rename33_>2Edge32’3(Rename44_,3Edge43’4(v1 +Vvi+Vvi+vy))),
that creates 4 vertices and progressively adds edges between them, or by the (simpler) term
Renamezz_)lEdgezl,z(vl + Renamezz_,lEdgezl’z(vl + Rename22_)1Edge21,2(v1 +v))),

that creates one vertex at a time and adds the edges between each new vertex and all the previous ones.
Assigning a cost to each operation inductively determines a cost for decompositions. The cost of an
operation is, intuitively, the number of labels that it needs to handle.

Definition 2.38. We assign a cost to each operation, w(Rename”i_,j):= n, w(Edge"i’j):= nand w(+):= 0.
The width of a clique decomposition ¢ of G is the maximum cost of its operations.

wd@) = Vgl it = (G)
| max{n, wd(z")} if 7 = Edge”; ;(t') or t = Rename”,_ ()
| max{wd(tl), Wd(tz)} ift = tl +t2

The clique width of a graph G is the width of a best clique decomposition:

clwd(G) := trg]lﬂn wd(?) .
G

As with the other graph widths, the clique width of a graph is the cost of a cheapest decomposition. The
first term in Example 2.37 costs 4, while the second costs 2 and gives a cheapest decomposition. In fact, in
general, cliques (and cographs) have clique width 2, trees have clique width at most 3 [CO0O0], while n-grids
have clique width n + 1 [GROO].

Rank width. Rank width and rank decompositions were introduced by Oum and Seymour to approximate
clique width [OumO05; OS06]. In fact, the two measures are equivalent.

Theorem 2.39 ([0S06, Proposition 6.3]). Rank width is equivalent to clique width. More precisely, for a graph
Gv
rwd(G) < clwd(G) < 24O+ 1
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Rank decompositions are similar in spirit to branch decompositions, but, instead of partitioning the edges
of a graph, they partition their vertices. A rank decomposition of a graph G = (V, E) is a tree where the
leaves are in bijection with the vertices V' of the graph. If this tree had a root, a rank decomposition would
be a recipe for successively splitting the graph in two parts along its edges until both parts contain only one
vertex.

Definition 2.40. A rank decomposition of a graph G is a pair (Y, r) of a subcubic tree Y and a bijection
r: leaves(Y) — vertices(G).

Example 2.41. While a branch decomposition cuts a graph along its vertices (Example 2.32), a rank decom-
position is, intuitively, a recipe for decomposing a graph into its single-vertex subgraphs by cutting along its
edges.

AN

N

X
2al!

N
|/

The cost of each cut is given by the rank of the adjacency matrix that represents it. The matrix below corre-
sponds to the cut in the decomposition above indicated by the arrow.

N
/N

k(11) =1

Each edge b in the tree Y determines a splitting of the graph: it determines a two partition of the leaves
of Y, which, through r, determines a two partition {A,, B,} of the vertices of G. This corresponds to a
splitting of the graph G into two subgraphs G; and G,. Intuitively, the order of an edge b is the amount of
information required to recover G by joining G| and G,. Given the partition {4,, B,} of the vertices of G,
we can record the edges in G beween A, and B, in a matrix X,. This means that, if v; € A, and v; € B,
the entry (i, j) of the matrix X, is the number of edges between v; and v;. The order of an edge b is the rank
of its corresponding matrix X .

Definition 2.42. The order of b is the rank of the matrix X, of the cut corresponding to b: ord(b) := rk(X).

The cut shown in Example 2.41 corresponds to the edge indicated by the arrow. The order of this edge is
1, which is the rank of the matrix recording the cut. The width of a decomposition is the maximal edge order,
and the rank width is the width of the most efficient decomposition. The complete graph on 4 vertices has
rank width 1 with minimal decomposition shown in Example 2.41.

Definition 2.43. The width of a rank decomposition (Y, r) of a graph G is the maximum order of its edges,
Wd(Y, r)i= MaXyeeqges(y) Ord(b). The rank width of a graph G is given by the min-max formula:

d(G):= minwd(Y,r).
rwd(G) gyl%W(,r)

The decomposition in Example 2.41 shows that the 4-clique has rank width 1. This holds for n-cliques in
general and they all have rank width 1. As for clique width, the class of grids have unbounded rank width
because the n-grid has rank width n — 1 [Jel10].
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2.3 Divide-and-conquer algorithms

Divide-and-conquer algorithms rely on the possibility of splitting, or decomposing, their inputs into smaller
parts according to a given set of operations. The decompositions defined in this section resemble clique de-
compositions in that they are terms expressing a certain algebraic structure. The advantage of having a term
expressing an input structure is that they give a divide-and-conquer algorithm: a “brute-force” algorithm
runs on the generating structures to compute partial solutions and these partial solutions are combined ac-
cording to the decomposition structure. When combining partial solutions is computationally easy and the
term expression for the input structure is simple, the divide-and-conquer algorithm is efficient. Problems
solved by such divide-and-conquer algorithms are fixed-parameter tractable: they can be quickly solved if
the term that expresses the input structure has bounded complexity.

This section presents a general technique [CM02; Mak04] for finding divide-and-conquer algorithms for
checking formulae of a chosen logic on relational structures and how to apply it to the case of monadic
second order logic to obtain Courcelle’s theorems for tree width [Cou92a] and clique width [COO0O].

Checking formulae on relational structures

The problem of checking formulae of a given logic on relational structures is fixed-parameter tractable under
two conditions.
1. There is a finite set of generating structures and, for each k € N, a finite set of operations O, to express

relational structures of width at most k.

2. A preservation theorem holds for the chosen operations.

Given some operations and some generating structures, the well-formed terms express relational structures
(Definitions 2.47 and 2.48). With Requirement 1, we define the width of a relational structure, which is
the fixed parameter for the divide-and-conquer algorithm (Definition 2.49). Requirement 2, on the other
hand, ensures that the theory of a composite structure can be computed from the theory of the component
structures as in Definition 2.46. Assembling the theories of the components amounts to looking up the
entries of a table (Definition 2.51) and evaluating a boolean function (Definition 2.45). These tasks do not
depend on the relational structure but only on the given logic and can be restricted to check one given
formula on the composite structure instead of computing its whole theory. The computation of the look-up
table depends on the width of terms and on the initial formula.

Under these conditions running the divide-and-conquer algorithm for a fixed formula depends linearly on
the size of the input term but more than exponentially on the width parameter, and the problem of checking
a formula on a term for a relational structure is fixed-parameter tractable with parameter the width of input
terms (Theorem 2.52).

For the rest of this section, we fix a logic £, and consider the class of formulae £(7) of all those sentences
that can be written in £ using the relational symbols in 7. We will write £(z, x) for the set of formulae that
can be written in £ using the relational symbols in 7 and with free variables in x. The theory of a relational
structure G in a logic L is the set of sentences in L(7) that are true in G.

Definition 2.44. For arelational signature 7, the theory of a set of relational z-structures K in a logic L is the
set of sentences in the logic L£(7) that is true in every z-structure G € K: Th,,(K):= {¢ € L(7) : VG €
K G F ¢}. When the set contains only one structure, we write Th,(G):= Th,({G}).

Given an operation o and a formula, it is sometimes possible to compute a sequence of formulae, called
their reduction sequence, whose truth values on components Gy, ..., G, determine the truth value of the
original formula on the composite structure o(G1, ..., G,).

Definition 2.45. For an n-ary operation o on z-structures, an o-reduction sequence for a formula ¢ € L(7)
is two pieces of data.
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o Alist(y/ |i=1,....,m, j=1,...,n) of formulae y’ € L(7).

e Aboolean function b: 2™" — 2, A
For all z-structures Gy, ..., G,, the values of the formulae q/l.J on Gy, ...,G, and the function b need to
determine the value of ¢ on o(Gy, ..., G,).

oGy, ....GYEG iff b(GEyl) =1

When the formula ¢ and the operation o need to be explicit, we will denote the list of formulae u/ij by
RedSeq(¢, 0) and the boolean function b by RedBool(¢, 0).

The operations that always admit reduction sequences are effectively smooth [Mak04, Definition 4.1].
For these operations, the theory of a composite structure only depends on the theories of its components.
This is a fundamental requirement for the correctness of divide-and-conquer algorithms and corresponds to
Requirement 2.

Definition 2.46. An n-ary operation o is £-smooth if the theory Th,(0(Gy, ..., G,)) of the z-structure
o(Gy, ..., G,)in L(z)depends only on Thy1(G)), ..., Thy(G,,), for all z-structures Gy, ..., G,,. The opera-
tion o is effectively L-smooth if, for every formula ¢ € L(r), there is an algorithm to compute the reduction
sequence RedSeq(¢, 0) and its associated formula RedBool(¢, 0).

Preservation theorems are the results that show that an operation is £-smooth. For first order logic,
there are preservation theorems with products and sums of relational structures [Mos52; FV59], while for
monadic second order logic, they only hold for sum-like operations [FV59; Fef57; CKO9]. Theorems 2.59
and 2.60 in the next section recall these results for the operations in Definitions 2.53 and 2.56.

A finite set of relational structures and a set of operations generate inductively a class of relational struc-
tures. Inductive classes are classes of relational structures obtained in this way with a finite set of smooth op-
erations [Mak04, Definition 4.3]. The sets of operations defined in the next section (Definitions 2.53 and 2.56)
are infinite, but they are indexed by natural numbers and finite for every fixed index. For every natural num-
ber k € N, there is a class of structures generated by the operations with index k. These are the structures
of width at most k. Classes of relational structure of bounded width are inductive.

Definition 2.47. A class K of z-structures is L-inductive if there are

e afinite generating set Xy C K of r-structures and

e afinite set O of £-smooth operations
such that K = |J,en K, Where K, 1 := {G z-structure : 3Gy, ...,G, € K, 30 € O G = o(Gy, ...,G))}
is the set of all the z-structures A that are obtained by applying an operation o € @ to some z-structures
Gy, ....G; € K,. The class K is effectively L-inductive if all the operations in O are effectively £L-smooth.

The terms that specify relational structures in terms of operations and generating structures are decom-
positions.

Definition 2.48. For an L-inductive class K of r-structures, an algebraic decomposition of a z-structure
G € Kisatermt € T constructed from applications of operations o € O to z-structures Gy in the
generating set K

t = (G) ifGek,,
| o(ty,....1) ift; € T, and G = o(Gy, ..., G) with o € O of arity k .
If a decomposition combines the structures G, ... G, with operations oy, ..., 0,, its width is given by the

maximum cost, max; ; {w(o,), |V;|}, where we fixed costs w(o;) for operations o;.
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Definition 2.49. A weight function for an L-inductive class of z-structures is a function w : @ — N. A choice
of weight function determines a width for algebraic decompositions:

wd() = Vgl ift =(G),
|  max{w(o), wd(t}), ..., wd(t,)} ift=o(t,....1).

The size of a decomposition is the number of its leaves:

size(t) = 1 ift =(G),
| size(t;) + -+ + size(ty) ift=o(ty,....1).

The algebraic width of a z-structure G is the width of a best decomposition:

awd(G):= trg%n wd(?) .
G

For the sets of operations defined in the next section, Theorems 2.55 and 2.58 characterise the bounded-
width classes of relational structures. The size of the decompositions corresponding to these operations is
bounded by the number of hyperedges or vertices in the relational structure.

Given a set of effectively smooth operations and a formula, we can compute the set of all reduction
sequences generated by the formula and arrange them in a look-up table. The general divide-and-conquer
strategy uses this look-up table for combining the partial solutions.

Definition 2.50. The O-reduction set Red(¢, O) of a formula ¢ € L(z, x) with respect to a finite set O of
L-smooth operations is the smallest set of formulas in £(z, x) that

e contains ¢ and

e is closed under taking o-reduction sequences RedSeq(—, 0), for all operations o € O.

Definition 2.51. For a finite set © of effectively £L-smooth operations and a formula ¢ € L(7), the look-up
table of ¢ and O is a list

Look(¢p, O):= (w, 0, RedSeq(y, 0), RedBool(y, 0) | w € Red(¢, O), 0 € O) .

When the look-up table Look(¢, ©) is finite and the operations are effectively smooth, the table can be
computed infinite time. We assume that the logic always gives finite look-up tables, which is true for monadic
second order logic [Mak04, Observation 6]. Look-up tables give a way of combining partial solutions and
showing fixed-parameter tractability of checking L£(z)-formulae on relational structures [CM02]. The proof
that Makowsky presents [Mak04, Theorem 4.21] precomputes all the possible partial solutions, but these
can also be computed as needed.

Theorem 2.52 ([CMO02]). Fix a formula ¢ € L(7) and an effectively L-inductive class K of t-structures with
respect to a finite set © of effectively L-smooth operations. Let G € K be a t-structure with a parse term d.
Then, whether the formula ¢ holds in G, G £ ¢, can be decided in time linear in size(d).

Proof. We precompute the look-up table Look(¢, ©) in finite time and this computation does not depend on
the input structure but only on the fixed formula and operations. Using this look-up table, we run Check(d, ¢)
(Algorithm 1). This computes G; E y/i’ for all the leaves G; of the input decomposition d and combines these
partial solutions by looking up on the table Look(¢, ©). Looking up the information in Look(¢, O) takes
constant time ¢, while computing G; F q/i’ on a substructure G; of size n; takes time c(n;), for some more
than exponential function ¢ : N — N. If the size of the decomposition is n and the maximum size of the
substructures G; is k, the computation takes O(c(k) - n). O]
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Algorithm 1: Check(d, ¢)
Data: a term d for a structure G and a formula ¢
Result: whether the structure G satisfies ¢
if d = (G) then
‘ compute t:= G E ¢ by brute force
elseif d = o(dy, ..., d,) for some o € O then

look up the reduction sequence (tl/l.j){:ll ’’’’’’’’’ :’ := RedSeq(¢, 0)
look up the function b:= RedBool(¢, 0)
fori=1,...,mandj=1,...,ndo
compute t{ := Check(d;, q/l.j)
end
compute t:= b((t{)i,j)
return ¢

Monadic second order logic of graphs

Monadic second order (MSO) logic is the fragment of second order logic where quantification is only allowed
on unary predicates, i.e. sets of variables. This section recalls Courcelle’s theorems for tree width and clique
width [Cou92a; CO00] in Corollaries 2.63 and 2.64. Their proof strategy relies on showing the assumptions
for applying Theorem 2.52:

(1) Definitions 2.53 and 2.56 recall the decomposition algebras for tree width introduced by Bauderon and
Courcelle [BC87; Cou90] and for rank width introduced by Courcelle and Kanté [CKO9], and Theorems 2.55
and 2.58 recall that their MSO-inductive classes are those of bounded tree width [Cou92a] and rank
width [CKO7].

(2) Theorems2.59 and 2.60 recall the Feferman-Vaught-Mostowski [FV59; Fef57] and the Courcelle-Kanté [CKO9]
preservation theorems.

The operations for tree width and rank width join two structures by merging some of their parts. Structures

are given an additional piece of information to specify which parts are allowed to be merged with other

structures. These are called constants for the tree width decomposition algebra and labels for the rank
width decomposition algebra.

Definition 2.53. A relational z-structure with n constants, for a natural number n € N, is a pair (G, ¢) of a
structure G together with a functionc: {1,...,n} - V.

e The generating structures are the empty structure with no constants, @, and, for every relational symbol
R € 7, the structure e with ay vertices that are all related by R and are all constants.

e Thedisjoint union of relational structures (G, ¢) and (H, d) with m and n constants is a relational structure
(G + H, ¢ + d) with m + n constants and universe A + B, where the relations are interpreted as disjoint
unions: RGtH = RG || RH

e The redefinition of constants Relab”f of a relational structure (G, ¢) with n constants with a function
f:A{1,...,m} - {1,...,n},is the relational strcuture (G, f¢) with m constants.

e The fusion of constantsi and j, with0 < i < j < n+1, on arelational structure (G, ¢) with n+ 1 constants
gives a relational structure Fuse”,-,j(G, ¢) with n constants where:

- The universe V'/ ;. is the set V' quotiented by the equivalence relation c(i) = ¢(j);

- The interpretation RF“®"ii(%) of the relation R is the subset of V' / c(iy=c(j) that corresponds to the
subset R quotiented by c(i) = ¢());
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- The function for the constants Fuse”; ;c is the reindexing of the function ¢ as Fuse”; ;c(k) = c(k) if
k < jand Fuse”; jc(k) = c(k+1)ifk > j.

e The addition of constant i, Vert";, on a relational structure (G, c) with n > i — 1 constants is the relational
structure (G + {v},c¢) withn + 1 constants ¢’ : n+ 1 — V + {v} defined as ¢'(j) = c(j) for j < i,
cd@=vandc'(j)=c(j—1)forj > i.

We assign a cost to these operations, w(+):=0, w(ReIab"f):= n, w(Fuse”; ;):=n and w(Vert";):= n, and
obtain a corresponding notion of width for decompositions.

Example 2.54. The graph formed by two 3-cliques joined along a vertex
[ J
| e |
[ ] N [ J

is expressed by the term Fusezm(t + 1), where t is a term for the 3-clique with one constant:
t= Fusezl’zReIab3,Fuse42’3(e + Relab?, Fuse42’3(e +e)),

that creates an edge at a time and joins its endpoints with the existing edges. The function:: {1,2} —
{1,2,3} indicates the inclusion of the set with two elements into the set with three elements.

The operations for relational structures recalled above are slightly different from the original ones [Cou90],
but define the same complexity measure [CM02; Mak04] and are more similar to the categorical algebra that
we will introduce in Section 4.1. They define a graph width that is equivalent to tree width [Cou92a] and, as
a consequence of Theorem 2.30, to branch width as well.

Theorem 2.55 ([Cou92a, Theorem 2.2]). For a relational t-structure (G, c) with constants, the algebraic
width given by the operations of disjoint union and fusion of constants (Definition 2.53) is linearly related to
its tree width:

twd(G) < awd(G, ¢) < max{2 - twd(G), twd(G) + y(7),y(G)} .

Rank width and clique width are defined for graphs and so they are the operations that characterise
them [CKO7]. These are defined for graphs where the vertices can have multiple labels and these labels can
be linearly modified.

Definition 2.56. An n-labelled graph (G, B) is a graph G on k vertices with a matrix B € Mat, (k, n) assigning
to each vertex some of the labels {1, ... ,n}.

e The generating structures are the empty 1-coloured graph, @;, and graph v, with a single 1-coloured
vertex.

e The linear recolouring Recol,, of an n-labelled graph (G, B) by an n by m matrix M € Mat,(n, m) is the
m-labelled graph (G, B - M), where the colours have been modified by the matrix M.

e The bilinear product +,, p y of two labelled graphs, (G, B) with m labels and (H, C) with n labels, by the
matrices M € Maty(m,[), N € Maty(n,]) and P € Mat,(m, n), is the I-labelled graph (G +p H, ( '),
where G +p H is the graph obtained from G and H by adding an edge {i, j} between the vertex i of G
and the vertex j of H for every non-zero entry (i, j) of P. This operation adds the edges specified by P
and recolours the vertices of G and H with M and N.

We assign a cost to the operations, w(Recol ;) := nand w(+,, p y):= max{m,n}, and obtain a correspond-
ing notion of width for decompositions.

Example 2.57. The 1-labelled 4-clique is expressed by the term

Recol{(vl +1’1’1 Recol{(vl +1,1’1 Recol{(vl +l,1,l Vl))) s
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that creates one vertex at a time and connects it to all existing vertices. The recolouring by the matrix
—4 = ( % ) assigns the same colour to all existing vertices. Note that the structure of this term resembles
the structure of the second clique term in Example 2.37 for the same graph.

The operations above are similar in spirit to those of clique width (Definition 2.35) and, in fact, they
define an equivalent width measure, rank width [CKO7]. All these operations are derived from the categorical
structure of graphs presented in Section 4.3.

Theorem 2.58 ([CKO7, Theorem 3.4]). For a graph (G, B) with n labels, the algebraic width given by linear
recolouring and bilinear product (Definition 2.56) is at least its rank width:

rwd(G) < awd(G, B) .

All these operations preserve monadic second order formulae. More precisely, the preservation theo-
rem for disjoint union is known as Feferman-Vaugh-Mostowski preservation theorem [Fef57; FV59], while
the preservation theorem for the fuse operation as defined above is by Courcelle and Makowsky [CM02,
Lemma 5.2]. The proof of this statement relies on Ehrenfeucht-Fraissé games [Fra55; Fra57; Ehr57; Ehré1].
For a reference, the preservation theorems can be found in Makowsky’s review [Mak04]: for the disjoint
union as Theorems 1.5 and 1.6, while for the fuse operation as Proposition 3.6.

Theorem 2.59 ([FV59; CMO02]). The disjoint union and the fuse operation of z-structures with sources are
effectively MSO-smooth operations.

The preservation theorem for the rank width operations [CKO9] is similar to that for clique width op-
erations [CMROO] and relies on a result that shows that all quantifier free operations are effectively MSO-
smooth [Cou92b, Theorem 3.4].

Theorem 2.60 ([CKO9, Proposition 3.2]). Linear recolouring and bilinear product of graphs with labels are
effectively MSO-smooth operations.

This results allow us to compute the reduction set of MSO formulae and use it to run Algorithm 1 as
described in Theorem 2.52 on MSO-inductive classes of relational structures. As consequences of Theo-
rems 2.55 and 2.58 to 2.60, bounded tree width and bounded clique width classes of relational structures
are, indeed, MSO-inductive.

Theorem 2.61 ([BC87; Cou90]). Classes of relational structures with sources of bounded tree width are ef-
fectively MSO-inductive with respect to disjoint union and the fuse operation. The same is true for classes of
bounded branch width.

Theorem 2.62 ([CK0O9]). Classes of graphs with labels of bounded clique width are effectively MSO-inductive
with respect to linear recolouring and bilinear product. The same is true for classes of bounded rank width.

Theorems 2.59 and 2.61 show that the assumptions of Theorem 2.52 hold for MSO logic and the op-
erations of disjoint union and fusion of sources, which gives Courcelle’s theorem for tree width [Cou92a,
Proposition 3.1], while Theorems 2.60 and 2.62 show them for the operations for rank width [CMROQO, The-
orem 4].

We assume that the input graph is given as a term as we do not deal with the problem of finding ef-
ficient decompositions in this work. For tree width, it is known that the term can be computed in linear
time [Bod93a], while, for clique width, it can be approximated [0S06].

Corollary 2.63 ([Cou92al). For a formula ¢ in the monadic second order logic of relational t-structures, the
problem of checking ¢ on an input structure of tree width at most k is linear in the number of its vertices.

Corollary 2.64 ([CMR0O; CO00]). For a formula ¢ in the monadic second order logic of graphs, the problem
of checking ¢ on an input graph of clique width at most k is linear in the number of its vertices.



Chapter 3

Monoidal Width

Monoidal width measures the structural complexity of morphisms in monoidal categories, and is the central
definition of this work. Monoidal width takes from tree width and rank width to capture their algorithmic
properties. The structural complexity of graphs, measured by tree and rank widths, gives an upper bound
to the computational cost of checking a certain class of properties on graphs. Similarly, the structural com-
plexity of morphisms in monoidal categories, measured by monoidal width, gives an upper bound to the
computational cost of divide-and-conquer algorithms on monoidal categories.

Monoidal width depends on monoidal decompositions as tree width and rank width depend on tree and
rank decompositions. A decomposition is a recipe for dividing a morphism, or a graph, into smaller parts with
given operations. This can be done in different ways, using different operations in different orders. Some
operations are more costly than others, which causes some decompositions to be more efficient than others
and divide-and-conquer algorithms on some decompositions run faster than on others. Decompositions that
use cheap operations are more efficient.

The operations for monoidal decompositions are the categorical composition and the monoidal product.
Typically, compositions represent information or resource sharing, which makes them costly. On the other
hand, monoidal products represent juxtaposition, which is usually cheap.

Monoidal decompositions are like algebraic decompositions for morphisms in monoidal categories where
the choice of monoidal category fixes the operations.

Monoidal decompositions may seem more restricted than the algebraic decompositions introduced in
Section 2.3. However, on the one hand, the flexibility of the choice of categorical algebra makes up for this
restriction and it allows us to capture tree width and clique width as particular cases. On the other hand,
there are advantages to this restriction as it gives canonicity to some of the numerous possible choices of
operations that define equivalent width measures. As shown in the previous chapter, the operations that
determine clique width are equivalent to those that determine rank width, in the sense that they determine
equivalent width measures. Similarly, there are slightly different operations that all define tree width. The
next chapter shows how all these operations are derivable from compositions and monoidal products in two
different monoidal categories of graphs.

3.1 Decompositions in monoidal categories

A monoidal decomposition describes a process as sequential and parallel compositions of smaller processes.
Explicitly, a monoidal decomposition is a syntax tree in the language of monoidal categories: internal nodes
are compositions or monoidal products, and leaves are morphisms that, when assembled according to the
operations in the decomposition, give the original morphism.

25
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Definition 3.1. A monoidal decomposition d € Df of a morphism f: A — B in a monoidal category Cis a
syntax tree that uses the composition § and the monoidal product ® in C as operations.

d = (f)
| (d1—®_d2) ifd]EDfl,dzeszandf=f1®f2
| (di—$c —dy) ifdy € Dy, dy €Dy and f = fi5c /2

The trivial decomposition, (f) € Dy, is always a possibility, but usually not the best one, as it can cost
more than other decompositions that break f into smaller components.

Example 3.2. Let f: 1 - 2and g: 2 — 1 be morphisms in a prop. A monoidal decomposition of f §
(f ® f)3 (g ® g) s g can be described by vertical and horizontal cuts in the string diagram of the morphism
(Figure 3.1). Vertical cuts represent compositions, while horizontal cuts represent monoidal products.

Figure 3.1: A monoidal decomposition represented with cuts in a string diagram.

Figure 3.1 encodes all the information of a monoidal decomposition but the order in which compositions and
monoidal products are associated. Choosing the order in which compositions and monoidal products are
performed, we obtain a formal expression of the decomposition in Figure 3.1.

(= —((f=5% == —(f—% —g)— % —2)

We will avoid writing decompositions in this form whenever possible.

The cost of a monoidal decomposition bounds the running time of a divide-and-conquer algorithm on
this decomposition, and depends on the operations and morphisms that label its internal nodes and leaves.
More precisely, it depends on a weight assigned to the operations and morphisms that appear in the decom-
position, in a way that we describe below.

Each morphism has a weight. The running time of a divide-and-conquer algorithm on the trivial decom-
position (f) depends, usually more than exponentially, on the weight of the morphism £, as it amounts to
running the brute-force algorithm on f.

Definition 3.3. A weight function w : Mor(C) — N’ for a monoidal category C is a function that assigns a
natural number to each morphism of C such that
1. w(fsgg) Sw(f)+w(g)+w(B),forf: A—> Bandg: B— C;and
2. w(f ® g) < w(f)+ w(g).
The weight function extends to objects of C by taking the weight of identity morphisms, w(A):= w(1 ).

The two conditions on the weight function intuitively capture the behaviour of the running time of the
brute-force algorithm on morphisms: the difference between running it on a composition f §5 g and on the
two morphisms f and g separately depends only on the boundary B of the composition; the running time
on a monoidal product f ® g depends only on the running time on the separate components f and g.

'We indicate with Mor(C) the set of morphisms of a small category C. If the category C is essentially small, we can still define a
weight function for C by defining it on its equivalent small category.
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Given the weight of morphisms, we can assign a weight to the operations of a monoidal category. The
weight of a composition along an object A is w(A):= w(1 ,), while the weight of a monoidal product is 0.
These determine the width of a decomposition by taking the maximum of the weights of operations and
morphisms appearing in the decomposition.

Definition 3.4. The width of a monoidal decomposition d € D/ of amorphism f: A — B in a monoidal
category C with a weight function w is defined inductively below.

wd(d):= w(f) ifd =(f)
max{wd(d,), wd(d,)} ifd =(d— ® —d,)
max{wd(d;), w(C), wd(d)} ifd =(d|— 3¢ —d,)

The size of the monoidal decomposition d is the number of its nodes.

size(d):= 1 ifd =(f)
size(d;) + 1 + size(d,) ifd = (d,— ® —dy) ord = (d,— 3¢ —d»)

Thanks to the inequalities in Definition 3.3, the weight of a morphism is bounded by the product of the
size and the width of any of its decompositions.

Lemma 3.5. Letd € D, be a monoidal decomposition of a morphism f : A — B in a monoidal category C.
Then,
w(f) < wd(d) - size(d) .

Proof. Thisis easily shown by induction on d. If d = (f) is a leaf, then its width coincides with the weight of
fowd(d):=w(f),anditssizeis 1. If d = (d;— $g —d,) or d = (d;— ® —d,), we bound the weight of f
applying the inequalities of Definition 3.3 and the induction hypothesis.

w(f) w(f)
< w(f1) + w(f2) + w(B) < w(f) +w(f2)
< wd(d,) size(d,) + wd(d,) size(d,) + w(B) < wd(d)) size(d,) + wd(d,) size(d,)
< max{wd(d,), w(B), wd(d,)} < max{wd(d,), wd(d,)}
- (size(d;) + size(d,) + 1) - (size(dy) + size(d,) + 1)
= wd(d) - size(d) = wd(d) - size(d)

O

The width of a decomposition is not influenced by the order in which the operations appear, but only by
their costs. This means that all the different monoidal decompositions corresponding to the cuts in Figure 3.1
have the same width and this representation can be used without any consequences.

Example 3.6. The width of the decomposition in Example 3.2, if we assume that w(f) = w(g) = 2,is 2. In
fact, compositions are along at most 2 wires, and the morphisms at the leaves all weight 2.

The monoidal width of a morphism is the width of a cheapest decomposition, and gives a bound for the
running time of a divide-and-conquer algorithm on the given morphism.

Definition 3.7. The monoidal width of a morphism f in a monoidal category C with a weight function w is
the width of a cheapest decomposition:

mwd(f):= dneﬁan wd(d).
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Example 3.8. With the morphisms f and g as in Example 3.2, we define a family of morphisms 4,,: 1 — 1
inductively:

* hy:=f%¢

* hy1:=f 5, ®h,)% 8.
Each £, has a monoidal decomposition of width 2" where the first node is the composition along the 2" wires
in the middle.

3.2 Categories with copy

A simple case study for monoidal decompositions are the copy morphisms of symmetric monoidal categories
with coherent copying. We bound their monoidal width, a result that is useful to compute the width in props
with biproducts (Section 3.3) and prove the more complex bounds in Chapters 5 and 6.

Definition 3.9. A symmetric monoidal category C has coherent copying if there is a class of copiable objects
Ac € Obj(C) such that

e X, Y eAciff X®Y € Ag;

e every object X € A is endowed with a copy morphism —€_y : X - X ® X;

e the copy morphisms are coherent: forevery X,Y € Aq, € _ygy = (€ x ® ¢ y)5(1x ®oyxy ®1y).

X
X
XQ®Y Y
XQY =
XQ®Y X
Y

For props with coherent copy, we assume that the weight of copy morphisms, symmetries and identities is
given by w(—€_y):=2-w(X), W(o y y):= W(X)+w(Y)and w(T y ) := w(X). Note that, on these morphisms,
this weight function satisfies the conditions in Definition 3.3.

Example 3.10. Any cartesian prop has coherent copying, where the copy morphisms are the universal ones
given by the cartesian structure: —€_,:=(1,,1,): n — n + n. The monoidal width of the copy morphism
on n is bounded by n + 1. This is shown more generally in Lemma 3.11, but the idea of the proof can be
exemplified in this case. Let y, ,,:=(—<, ®1,)5(,®0c,,): n+m — n+m+ nbe the morphism in
Figure 3.2. We can decompose y,, ,, interms of y,_; ,,.; (in the dashed box in Figure 3.2), the copy morphism
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n—1
n—1
1
n
n - m
Yo = m= 1
H n—1
m n
m 1

Figure 3.2: Decomposing copy morphisms.

—4_; and the symmetry o, |, by cutting along at most n + 1 + m wires:

Yam = (1umy @ (@15 (1, @ 01 1)) Stom (8n—tmet @ T1)-

By induction, we decompose —€_, = 7, cutting along only n + 1 wires. In particular, this means that
mwd(—_,) <n+ 1.

The following result generalises the reasoning in Example 3.10.

Lemma 3.11. Let C be a symmetric monoidal category with coherent copying and d € D, be a monoidal
decomposition of a morphism f: Y ® X ® Z - W, with X:= X, ® -+ ® X,,. Then we can construct a
monoidal decomposition C+(d) of the morphism y(f):=(1y ® {7 ®1,s(1 vox ® 0% 25 ®15)

Y

rx(f)i= X W
X

z

of bounded width:

wd(Cy(d)) < max{wd(d),wY)+w(Z)+(n+1)- A_nl]ax w(X;)}.

Proof. Proceed by induction on the number n of objects being copied. If n = 0, then we are done because
we can keep the decomposition d: C;(d):=d.

Suppose that the statement is true for any /' : Y®X® Z'— W andlet f: Y®§®Xn+1 RZ - W.
Then we can rewrite IXex 1(f) using coherence of the copy morphisms —€_ and the properties of the
n+

symmetries .

YY®Xn+1 (f)
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= XrH—l _
X
zZ Xn+l
Y
— frw
= Xn+l _
X
z Xn+l

Consider y5(f):=(1 ® {7 ® (1 ®oc):(f ®1), the morphism in the dashed box. By the induc-
tion hypothesis, there is a monoidal decomposition C5(d) of y5(f) with bounded width: wd(C4(d)) <
max{wd(d), w(Y) + w(X, ;1 ® Z) + (n+ 1) -max,_; _, W(X;)}. Using this decomposition, we can define a
monoidal decomposition CY®XW (d) of IXex,,, (f) as shown below.

Y |
— frw
r—f

Xn+]
X .
V4 X
Note that the only cut that matters is the longest vertical one, the composition node along Y ®Y® X, ®

Z® X, 1, because all the other cuts are cheaper. The cost of this cutis w(Y)+w(Z)+2-w(X,, )+ w(X) =

wX) +w(Z)+w(X, )+ Zl'.’:ll w(X;). With this observation and applying the induction hypothesis, we

can compute the width of the decomposition CY@Xn-H (d).

wd(CY® X, (d))
= max{w(l, o) W€y W12 w(ly ).Woy,  7),wd(Cxp(d)),
WY ®X®Z® X, ) WXy ® Z® X,01))
n+1

< max{w(Y) + W(Z) + W(X,,)) + Y W(X,), wd(Cx(d))}
i=1

<max{w@¥)+w(Z)+(n+2)- 1max | w(X;), wd(C5(d))}
i=1,....,n+
<max{w@¥)+w(Z)+ (n+2)- A_lmax+] w(X)),
wd(d), wX)+ WX, 1 ® D)+ m+1)- '_l’lilaX w(X;)}

=max{w¥)+w(Z)+(n+2)- ‘_1maxJrl w(X;), wd(d)}
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3.3 Categories with biproducts

This section shows another simple example of monoidal decompositions. In props with biproducts, mor-
phisms have a rank which is related to their monoidal width. An example of such props is the category of
matrices?.

Example 3.12. The category Maty of matrices over a semiring R is a prop where the monoidal product is a
biproduct. Its morphisms n — m are m rows by n columns matrices with entries in the semiring R and the
biproduct of matrices, A @ B:= (4 %), is the monoidal product.

By the string diagrammatic formulation of Fox’s theorem [Fox76], every object in a bicartesian prop has
natural commutative monoid and cocommutative comonoid structures. This structures are fundamental for
the proofs in this section.

Theorem 3.13. A symmetric monoidal category C is cartesian if and only if every object A is equipped with
a cocommutative comonoid structure and this structure is natural and uniform, whose structure morphisms
and equations are in Figure 3.3.

a4 e

O

B B
AH L= i A]—Q - B—e

A
A®B A B A—e

A®B{ = AQB —e =
A®B A B—e
B
B

Figure 3.3: Structure and equations for a natural and uniform cocommutative comonoid.

The results in this section hold for monoidal categories where the monoidal product is the biproduct
and whose objects are a unique factorisation monoid. To help readability, some results are stated for the
particular case of props, but they apply to, for example, coloured props as well. When the monoidal product
is the biproduct, then, in particular, the monoidal unit is the zero object. Then, there is only one scalar: the
only morphism I — I is the identity. In some sense, this means that the interesting part of a morphism
happens on the boundary and a reasonable choice of weight function for these categories only keeps track
of the complexity of the boundaries.

2We thank JS Lemay for suggesting to generalise this result for matrices to categories with biproducts.
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Definition 3.14. For a prop P, define a weight function w: A — N as w(g):= max{m,n}, forg: n - m
in P. For a monoidal category C where the objects are a unique factorisation monoid, define the dimension
| X| of an object X to be the number of factors in its unique ®-factorisation X = X; ® ... ® X;, | X|:=k.
A weight function for Cisw: A - Nasw(g):= max{|X]|,|Y|},forg: X - Y inC.

This definition satisfies the conditions for a weight function.

Lemma 3.15. In a monoidal category whose objects are a unique factorisation monoid, the function w in
Definition 3.14 satisfies the conditions for a weight function in Definition 3.3.

Proof. For morphisms f: X - Y,g: Y - Zand f/: X' > Y'inC/letX = X; ® - Q® X, Y =
Y, ®Y,,Z=2Q®Z,X' =X ®-®X,andY' =Y/ ® - ®Y/ be the unique ®-
factorisations of X, Y, Z, X’ and Y’. We compute and bound their weights.

w(f38) w(f ® ")

:= max{/, n} = max{/+ ', m+m'}
<max{l,m,n} +m <max{I+U'1+m, ' +mm+m'}
<max{/,m} + max{m,n} +m =max{/,m} + max{l',m’}

=:w(f) +w(g)+m =:w(f) + w(f")

O

The proof strategy consists in finding a standard shape of decomposition and show that it is minimal.
When a morphism f can be written as a monoidal product f = f; ® - ® f}, of morphisms of smaller weight,
the decompositions that use this factorisation are more efficient (Proposition 3.19). Under the assumptions
above, every morphism has a unique ®-factorisation (Lemma 3.20) and a minimal decomposition must use

this factorisation.

[=/H® @ fi=

Every factor f; can be minimally split as a composition f; = u; 5, Ui and give a decomposition of f of
width at least max,_; _, r;. We show that each u; and v; can be further decomposed and their monoidal
width is at most r; + 1. This compound decomposition is minimal and bounds the monoidal width of f as
max;_y . ;r; Smwd(f) <max;_y 4 r;+1.

The shape of the minimal decomposition above shows that minimal vertical cuts play an important role
in computing monoidal width. Following the characterisation of rank for matrices, we define the rank of
morphisms as their minimal vertical cut.

Lemma 3.16 ([PO99]). Let A: n — min Maty. Thenmin{k € N : A = B, C} = rk(A).

Definition 3.17. The rank of a morphism f : n — min a prop P is its minimal vertical cut:

rk(f):=minfk eN: f=ggs, h}.
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Similarly, for a morphism f: X — Y in a monoidal category C, whose objects are a unique factorisation
monoid, its rank is its minimal vertical cut:

rk(f):= min{k €N : f=gsch A |C| =k} .

The first step for computing monoidal width is to show that, whenever possible, decompositions should
start with a ® node. This result needs a technical lemma: discarding outputs or inputs of a morphism cannot
increase its width.

Lemma 3.18. Let /': n — min a prop P where 0 is both initial and terminal and d € Dj. Let f:= [ §
(T ®—)and f:=(1,_;, @ o) s f,withk < mand k < n, respectively.

fo= /g "L = TR m.

Then there are monoidal decompositions D(d) € D o and Z(d) € D = of bounded width, wd(D(d)) <
wd(d) and wd(Z(d)) < wd(d).

Proof. We show the inequality for f}, by induction on the decomposition d. The inequality for f, follows
from the fact that the same proof applies to P°P. If the decomposition has only one node, d = (f), then we
define D(d):= (fp) and obtain that

wd(D(d)):= max{n,m — k} <max{n,m} =:wd(d) .

If the decomposition starts with a composition node, d = (d,— §; —d,), then f = f, 5, f,, where d; is a
monoidal decomposition of f;.

By induction hypothesis, there is a monoidal decomposition D(d,) of f53(1,,_, ®—9,) such that wd(D(d,)) <

wd(d,). We use this decomposition to define a decomposition D(d):= (d,— §; —D(d,)) of fp. Then, D(d)
is a monoidal decomposition of f §(1,,_, ® —e,) because f §(1,,_, ® —,) = f15 f25(1,,_r ® —#) and its
width is bounded.

wd(D(d)):= max{wd(d,), j, wd(D(d,))} < max{wd(d,), j, wd(d,)} =:wd(d)

If the decomposition starts with a tensor node, d = (d;— @ —d,), then f = f| ® f,, with d; monoidal
decomposition of f;: n; — m;. There are two possibilities: either k < m, or k > m,. If k < m,, then

F5Mu @) =/f1®(f25(1,,_« @)

_ n—f m

By induction hypothesis, there is a monoidal decomposition D(d,) of f53(1,,_, ®—,) such that wd(D(d,)) <
wd(d,). Then, we can use this decomposition to define a decomposition D(d):= (d;— ® —D(d,)) of fp
whose width is bounded.

wd(D(d)):= max{wd(d;), wd(D(d,))} < max{wd(d,),wd(d,)} =:wd(d)

If k> my, then f5 (1, ® ) = (f1§ (N, —krm, @ ®—m,) @ (f259y,)-

m—k " my —k+m,
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By induction hypothesis, there are monoidal decompositions D(d;) of f1 §(1,,, _x1m, ® —*k_m,) and [ 59,
such that wd(D(d;)) < wd(d;). Then, we can use these decompositions to define a monoidal decomposition
D(d):=(D(d|)— ® —D(d,)) of f of bounded width.

wd(D(d)):= max{wd(D(d,)), wd(D(d,))} < max{wd(d,),wd(d,)} =:wd(d)

As a consequence, decompositions that start with a ® node are more efficient.

Proposition 3.19. Let f : n — mbeamorphisminapropPandd’ = (di—;k—dé) € D be a decomposition
of f. Suppose there are f,: ny — m;and f,: n, — m, such that f = f; ® f,. Then, thereisd =
(dy— ® —d,) € D, such that wd(d) < wd(d").

Proof. Since the monoidal unit is the zero object, f; = (1 ® o, )§ f 3(1 ® -, ) and f, = (-, ® 1) f
(—*», ® 1). By Lemma 3.18, there are monoidal decompositions d; = Z(Dy(d")) and dy = Z,(D,(d")) of
/1 and f, with bounded width, wd(d;) < wd(d”). Then, the decomposition d := (d,— ® —d,) is a monoidal
decomposition of f and

wd(d)
:= max{wd(d,), wd(d,)}
< wd(d")

O

In monoidal categories where the monoidal unit is a zero object and the objects are a unique factorisation
monoid, morphisms have a unique ®-decomposition.

Lemma 3.20. Let C be a monoidal category whose monoidal unit O is a zero object, and whose objects are a
unique factorisation monoid. Then any morphism f in C has a unique ®-decomposition.

Proof. Suppose that f: X — Y has two ®-decompositions f = f1 ® - ® f,, = g ® - ® g, with
fi: X; > Y and g Z; > W, that are non ®-decomposables. Suppose m < n and proceed by induction
on m.

If m = 0, then X = 0 is the empty monoidal product, and f = 1pand g; = 1 foreveryi =1, ...,n must
be identities on 0 because 0 is both initial and terminal.

For the induction step, suppose that f := [19...®f,,_1 hasaunique @-decomposition. Let A;®...® A,
and B; ® ... ® By be the unique ®-decompositionsof X, ®...® X,, = Z,®...® Z,and Y| ®...Q Y, =
W ® ... ® W, respectively. Then, thereare x <aandy < fsuchthat 4| ® ... ® A, =X, ®...® X,,_;
and B; ® ... ® By =Y, ®...8Y,_,. Then, we can rewrite £ in terms of g;s, for some k < n:

&1
Xl fl Yl
X, — 5 v 81
0 8k—1 PY
= Xm—l fm—l Ym—l = =
Xm—l 4fm—l [ Ym—l f 8k o— 8k-1 o
O— Jm —@
O—1 & —©®
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By induction hypothesis, f has a unique ®-decomposition, thus it must be that k = m, for everyi < m — 1
fi=gand f,_; = (1 ® o) g, 5 (1 ® —e) because g; are not @-decomposable. Then, we can express f,,
intermsof g, ..., g,:

Xm4 fm *Ym = O—‘fmfl’—. = = &m
&m
Xm ] fm [ Ym
8n
&n
By hypothesis, f,, is not @ decomposable and m < n. Thus,n =m, f,,_; = g,_; and f,, = g,.- O

These results show that a minimal monoidal decomposition of ' = f; ® --- ® f} can be obtained from
minimal monoidal decompositions of f;.

Corollary 3.21. Let f = f|® - ® f} be the unique ®-decomposition of a morphism f in a monoidal category
where the monoidal unit is a zero object and the objects are a unique factorisation monoid. Then, a minimal
monoidal decomposition of f isd = (dy— & —(d,— ® — --- d})), for minimal decompositions d,; of f;.

How do we find minimal decompositions of the factors f;? Since they cannot be ®@-factored further,
their minimal decompositions will start with a composition node. When this composition node is minimal, it
corresponds to the rank and we obtain mwd(f) > max;{rk(f;)}. For the upper bound, we show that every
/i can be decomposed with width at most rk(f;) + 1. The unpleasant +1 in this bound comes from the
difference between the weight and the minimal boundary of the morphisms o— and —e, and from the +1 in
the bound of the monoidal width of copy morphisms in Lemma 3.11.

Proposition 3.22. The monoidal width of a morphism f : n — m in a bicartesian prop P is bounded by its
domain and codomain: mwd(f) < min{m,n} + 1.

Proof. We proceed by induction on k = max{m, n}. There are three base cases.
e If n = 0, then f = o—, because 0 is initial by hypothesis. Then, mwd(f) = mwd(Q),,o) < w(o-) =
max{1,1} < min{0,1} + 1.
e If m = 0, then f = —e, because 0 is terminal by hypothesis. Then, mwd(f) = mwd(Q), —) < w(-e) =
max{l,1} <min{0, 1} + 1.
o If m=n=1,then mwd(f) < w(f) =max{1l,1} <min{l, 1} + 1 by definition of the weight function.
For the induction steps, suppose that the statement is true for any f/: 0’ — m’ with max{m’,n'} < k =
max{m,n} and min{m’,n’} > 1. There are three possibilities.
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1. If0 < n < m = k, then f can be decomposed as shown below because —¢_,,, | is uniform and morphisms
are copiable because P is cartesian by hypothesis.

n s
m—1
s
m—1
:
1
'
J 1
This corresponds to f = —€_, 5 (1, ® hy) 5,41 (B, ® 1)), where hy:=f §(-»,_; ®1,): n —» 1 and
hy=f3(, @) n>m—1.
Then, mwd(f) < max{mwd(—¢_, 5(1,® h;)),n+ 1, mwd(h, ®1,)}. So, we want to bound the monoidal
width of the two morphisms appearing in the formula above. For the first morphism, we apply the induc-

tion hypothesis because 7, : » = 1 and 1,n < k and we apply Lemma 3.11. For the second morphism,
we apply the induction hypothesis because i, : n > m—1andn,m —1 < k.

mwd(—¢_, 5 (1, ® hy)) mwd(h, ® 1)

< (by Lemma 3.11) = (by Definition 3.4)
max{mwd(h;),n+ 1} mwd(h,)

< (by induction hypothesis) < (by induction hypothesis)
max{min{n,1} +1,n+ 1} min{n,m—1} +1

= (because 0 < n) = (becausen <m—1)
n+1 n+1

Then, mwd(f) < n+ 1 =min{m,n} + 1 because n < m.

2. If0 < m < n = k, we can apply Case 1to P°P with the same assumptions on the set of atoms because
P°P is also bicartesian. We obtain that mwd(f) < m + 1 = min{m, n} + 1 because m < n.

3. If0 < m=n =k, fcan be decomposed as in Case 1 (or Case 2) and, instead of applying the induction
hypothesis to bound mwd(#,) and mwd(h,), one applies Case 2 (or Case 1). Then, mwd(f) < m+1 =
min{m,n} + 1 because m = n.

O

Lemma 3.23. The monoidal width of a morphism f : n — m in a bicartesian prop P is bounded by its rank:
mwd f < rk(f) + 1. Moreover, if f is not ®@-decomposable, i.e. there are no fy, f, both distinct from f such
that f = f| ® f,, then also mwdf > rk(f).

Proof. For the first inequality, observe that there is a monoidal decomposition d = ((g)— 5, —(h)) of f
attaining the minimum of k = rk(f). By Proposition 3.22, there are monoidal decompositions d; and d, of
g and h whose width is bounded by their boundaries and, as a consequence, by the rank of f.

wd(d,) wd(d,)
<min{n k} +1 < min{k,m} + 1
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=k+1 =k+1
By definition of monoidal width and weight function,

mwd(f)

< wd(d)

'= max{wd(d,), k, wd(d,)}
<max{k+1,k,k+1}
=rk(f)+1

For the second inequality, suppose that there are no non-trivial f|, f, such that f = f| ® f,. This means
that there are no monoidal decompositions of f that start with a monoidal product node, (d|— ® —d,),
and that all monoidal decompositions of f must either start with a composition node, (d;— 5, —d,), or be
aleaf, (f). Then,

mwd(f)

= dnelilglf wd(d)
>minfkeN: f=ggs, h}
=:rk(f)

O

From Corollary 3.21 and Lemma 3.23, we construct a minimal monoidal decomposition of morphisms in
props with a zero object.

Theorem 3.24. Let f be a morphismin a prop P where 0 is a zero object. Then, f has a unique ®-decomposition
f = f18...Qf; andits monoidal width is, up to 1, the maximum of the ranks of its factors, max;_; __, rk(f;) <
mwd(f) < max,_;__ rk(f;) + L.

Proof. By Lemma 3.23, there are monoidal decompositions d, of f; of rank-bounded width, wd(d;) < rk(f,)+
1. We use these to define a decomposition d of f,d = (d|— ® — -+ (d;_;— & —d})), whose width is
wd(d):= max;_; , wd(d;) <max,_; . rk(f)+1.

By Lemma 3.20, the factors f; are not ®-decomposable. Then, the decompositions d; are minimal and
mwd(f;) = wd(d;) > rk(f;). By Proposition 3.19, the decomposition d is also minimal and mwd(f) >
wd(d) = max;_;__ 4 rk(f)). O

.....

.....






Chapter 4

Interlude: Two Perspectives on Graphs

Graphs and their homomorphisms form a monoidal category (Example 2.3), but not the one we will be con-
cerned with. Our interest is in decomposing graphs as morphisms and we will instantiate monoidal width in
two categorical algebras of graphs. Cospans of graphs are a well-known algebra for composing graphs along
some shared vertices. Section 4.1recalls cospans of hypergraphs and relational structures, and their syntactic
presentation based on special Frobenius monoids [RSWO5; BSS18]. Section 4.3 introduces the less-known
algebra of graphs where the boundaries are “dangling edges” [C515; DHS21] that allow graphs to be com-
posed by connecting their boundary edges. Here, adjacency matrices encode the connectivity information
of graphs and the syntactic presentation of this monoidal category of graphs relies on that of matrices [Zan15;
Bon+19b], which we recall in Section 4.2.

These categorical algebras give canonical choices for the operations defining tree width and clique width,
which we recalled in Sections 2.2 and 2.3. We derive these operations from compositions and monoidal
products in cospans of hypergraphs and graphs with dangling edges, respectively.

4.1 Cospans of hypergraphs and relational structures

Cospans give an algebraic structure to compose systems along shared boundaries. Together with their dual
algebra of spans, they are natural examples of Katis, Sabadini and Walters’ bicategories of processes [KSW97a],
where cospans and spans of sets and graphs model transition systems and automata [KSW97b; Kat+0O;
KSWO04; RSW04]. Gadducci and Heckel’s axiomatisation of double pushout graph rewriting also relies on
cospans for adding boundaries to graphs [GH97; GHL99]. More recently, cospans of graphs and variations
of them have been applied to modelling “open” processes like Petri nets [Fon15; BP17; BM20] and Markov
processes [BFP16; CHP17].

In most of these applications, the boundaries do not retain all the computational information of the
part of the system they refer to, so the boundary objects are, usually, simpler than the objects that model
systems. Thus, the algebra of cospans is often restricted to a full subcategory on “simple” or “discrete” ob-
jects. This restriction can be mathematically justified with decorated [Fon15] and structured [FSO7] cospans,
or with free feedback monoidal categories [Bon+19a; Di +23], but, for this work, the most appropriate per-
spective is the characterisation of discrete cospans of graphs as a free Frobenius monoid with an additional
generator [RSWO05]. A very similar syntactic characterisation works more generally for discrete cospans of
relational structures [BSS18]. This section reviews the category of relational structures, cospans of them
and their syntactic presentation (Section 4.1). As anticipated in Example 2.22, graphs and hypergraphs are
instances of relational structures where the relational signature specifies the adjacency relations between
vertices. Morphisms of relational structures are functions preserving the relations and, in the case of graphs

39
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and hypergraph, these are the usual graph and hypergraph homomorphisms.

Definition 4.1. For a relational signature 7, a relational z-structure G is a finite set V" with an a z-ary relation
RY C VR for each relational symbol R of arity a g in the signature 7. A morphism of relational z-structures
h: G — Hisafunction h: V; — Vg that respects the relations: for all relational symbols (R, ag) € 7 and
all lists of elements vy, ..., v, €V,

ROy, ..., 0,) = R (h(v)), ..., h(v,,)) -
Relational structures and their morphisms form a monoidal category, where disjoint union gives the mo-
noidal structure (Proposition 4.6). This category can be described concisely as a comma category [Lawé3].

Remark 4.2. Relational z-structures and their morphisms are the objects and morphisms of the comma
category (1 | T) for the identity functor and the functor T : FinSet — FinSet defined by the pullback below.

TV) — V*
\L - \bength
T ——> N
Explicitly, elements of T(V) are pairs (R, (vy, ..., UaR)) of a relational symbol R and a list of length a of
elements vy, ..., v,, € V. Arelational structureis a function G : E; — T(V) andamorphismh: G — H

is a pair of functions h : E; — Ey and hy : Vg = Vg suchthat G§ T(hy) = hp s H.

hg
Eg —— Ey

G\L \LH
T(h
) -4 1)

Proposition 4.3. Relational t-structures and their morphisms form a category Struct,.

Proof. As detailed in Remark 4.2, Struct, is also the comma category (1 | T) of the identity functor Tg;,ge
and the functor T : FinSet — FinSet. For a reference, see [Mac78, Section 11.6]. O

Intuitively, a cospan is a system together with two boundary maps that identify the subsystems that can
communicate with the environment. Composition of cospans allows them to be composed along common
substructures.

Definition 4.4. A cospan in a category C is a pair of morphisms, thelegs f: X - Eandg: Y — E,inC
that share the same codomain E, the head.

Cospans form a monoidal category when the base category has finite colimits [Bén67].

Proposition 4.5. When C has finite colimits, cospans form a symmetric monoidal category Cospan(C) whose
objects are the objects of C and morphisms are cospans in C. More precisely, a morphism X — Y in
Cospan(C) is an equivalence class of cospans f: X — E « Y :g, up to isomorphism of the head of
the cospan. The compositionof f : X - E « Y :gandh: Y — F « Z :lis given by the pushout of g
and h. The monoidal product is given by component-wise coproducts.

Relational structures have finite colimits and there is a category of cospans of them.

Proposition 4.6. The category Struct, has all finite colimits.
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Proof. A comma category (S | T) for two functors S: C - Eand T : D — E has all finite colimits if C and
D have all finite colimits and the functor S preserves them (see [RB88, Section 5.2] for a proof). In our case,
C = D = FinSet, which has all finite colimits and S = 1 is the identity functor, which preserves colimits.
Then, Struct, has all finite colimits. O

This result ensures that we can consider the monoidal category of cospans of relational structures. As
mentioned at the beginning of this section, the boundaries do not need to carry all the computational infor-
mation of a relational structure, but it is sufficient that they record which vertices are accessible from the
environment. Thus, we restrict to discrete cospans of relational structures, the full subcategory of cospans on
discrete objects, i.e. sets. The legs of such a cospan point to some vertices in the relational structure that are
called sources as they play a similar role to the sources for graphs in Bauderon and Courcelle’s work [BC87].

Definition 4.7. The category sStruct, of relational structures with sources is the full subcategory of the mo-
noidal category Cospan(Struct,) on discrete structures D : § — X. Explicitly, morphisms are cospans of
functions/: X — V « Y :rwith anapex z-structure G: E; — T(V;).

Explicitly, the composition of two morphisms I;: X — V; « Y trgandily: Y > Vg « Z :ryin
sStruct, is the morphism ! : X — Vi 3y Viy < Z : rdefined by the pushout of r; and I ;.

Ve sy Va
y{ v w
Ve Vi
X Y Z

The apex of the cospan, V;; sy Vj, is the relational structure obtained by joining V; and V5 and identifying
the vertices that are the images of the same element of the boundary Y. The legs of the composite cospan
extend the legs of the original cospans: [ := 5 §ig and r:= rg §i . The monoidal product of two morphisms
I: X >V «Y :rand!'": X' > V' « Y’ :r is their component-wise coproduct: I +1': X + X' —
V+V' «Y+Y ir+r.

Chapter 5is dedicated to showing that monoidal width in the category sStruct_ is equivalent to tree width.
Since the tree width of a relational structure is the same as the tree width of its underlying hypergraph, it is
sufficient to prove that monoidal width in the category of discrete cospans of hypergraphs is equivalent to
tree width.

Definition 4.8. The category Cospan(UHGraph), has sets as objects and discrete cospans of hypergraphs
as morphisms. It is equivalent to the category sStructThyp of discrete cospans of relational structures on the
relational signature Thyp for hypergraphs.

A syntax for relational structures

The skeleton of the category Cospan(FinSet) of cospans of finite sets and functions is isomorphic to the prop
generated by a special Frobenius monoid [LacO4, Section 5.4], whose generators and equations are in Fig-
ure 4.1. The syntactic presentation of discrete cospans of relational structures builds on this characterisation
and only adds a generator for each relational symbol R in the relational signature .

Definition 4.9. The category sFrob is the prop generated by a special Frobenius monoid, whose generators
and equations are in Figure 4.1.
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Figure 4.1: Generators and equations for a special Frobenius monoid.

Proposition 4.10 ([Lac04]). The skeleton of Cospan(FinSet) is isomorphic to the prop sFrob generated by a
special Frobenius monoid.

The prop of relational structures with sources is obtained by freely adding a generator e : ag — O for
each (R, ag) € 7 to the prop sFrob.

Definition 4.11. Given a relational signature 7, the category LHedge, is the free prop generated by a “labelled
hyperedge” generator e : ag — O for every relational symbol R of arity a in the signature = (Figure 4.2).

aR3 forevery (R,ag) €7

Figure 4.2: The labelled hyperedge generators.

Definition 4.12. For a relational signature 7, the prop sFrob, := sFrob+LHedge, is the coproduct of the prop
sFrob generated by a special Frobenius monoid and the prop LHedge, generated by the labelled hyperedges
int.

The relational signature for graphs z,, contains a single symbol @ and morphisms in sFrongr are
graphs with sources.

Example 4.13. The 3-clique with one source and the 3-star with one source are morphisms 1 — Qin sFrongr.

o—e
VRN

Remark 4.14. We can impose additional equations to sFrob_ to constrain the behaviour of some relational
symbols. For a symmetric relational symbol R, we impose that p § e = ey, for every permutation p of the

a g inputs of ep.
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If we want to impose that there may not be parallel edges of the same type R, we add that {aR J(er®epr) =

- ®

The prop sFrob, is a syntax for relational structures with sources [BSS18]. This result relies on previ-
ous characterisations of the category of discrete cospans of graphs with Frobenius monoids [GH97; GHL99;
RSWO5].

eg-

Theorem 4.15 ([BSS18, Theorem 31]). The category sStruct, of t-structures with sources is isomorphic to the
free special Frobenius prop sFrob, on the signature 7.

The operations for tree width

This section takes the operations for tree width of Definition 2.53 introduced by Bauderon and Courcelle [BC87;
Cou90] and examines them through a categorical lens. We derive these operations from compositions and
monoidal products in the category sFrob_ of relational structures with sources. This correspondence defines
inductively a function from structures with n constants to morphisms of type n — 0 in sFrob,, which maps
a structure (G, ¢) with n constants to the morphism g: n — 0 in sFrob_ that corresponds to the discrete
cospan of structuresg=c: n > G <0 : i

The categorical structure clarifies the relationships between all the slightly different versions of the oper-
ations for tree width [BC87; Cou90; CMO02]. While it is not difficult to check, with their usual definitions, that
these different variations are equivalent, this becomes even more apparent when seen from the categorical
perspective. This perspective also gives canonicity to one choice: the operations that define tree width are
composition and monoidal product in the monoidal category of relational structures with sources. Chapter 5
is devoted to prove this in detail.

The generating structures of the algebraic tree decompositions correspond to specific morphisms in
sFrob,. The empty structure with no constants @ is the identity morphism on the monoidal unit 1;, and
the structure e with ap constants is the generatorep : ap — 0.

g and eg P~ aRE

The operations are derived from the categorical structure. The disjoint union (G, ¢)+(H, d) of structures
(G, c) with m constants and (H, d) with n constants is their monoidal product as morphisms g®#A : m+n — 0.

mo)

(G,c)+(H,d) —

")

The redefinition of constants Relab"f(G, ¢) by a function f is obtained by precomposing the corresponding
morphism g with the cospan f : m — n < n : 1. This cospan is composed only of the monoid operations,
i.e. it is covariantly lifted from the function f : m — n.

Relab” (G.c) > m =D

'We indicate with ia - 0 = Athe unique morphism from the initial object O to an object A. Similarly, we indicate with !, : A — 1
the unique morphism from an object A to the terminal object 1
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Similarly, the fusion of the constants i and j, Fuse"[,j(G, ¢), is obtained by precomposing with the cospan
dl.cj;’ =1:n->n«< n+1 :d;; Thiscospan is contravariantly lifted from the functiond;;: n+1 — n
defined as d; ;(k) = kifk < j,d; ;(j) =iand d, ;(k) = k — 1if k > j. The cospan dg;’ is composed only of
symmetries and a copy morphism that joins the i and j* outputs.

ith

1
jth
n :
Fuse”, ;(G.c) n+1 where d}®:= ; Sg »

J

The addition of a constant i, Vert”;(G, c) is also a precomposition. We compose the cospan a:.’p =1:n+l -
n+1 < n : a; with the morphism g that corresponds to the structure (G, c). As with the fusion of constants,
the cospan a?p is contravariantly lifted from the function g; : » — n 4+ 1 defined as a;(k) = k if k < i and
a;(k) = k+ 1if k > i. The cospan a?p is composed only of identities and one discard morphism on the i#
input.

T
+1 T
Vert" (G, c) " where a4}’ := L J—

The operations of redefinition, fusion and addition of constants together are as expressive as the op-
eration of precomposition with edge-less morphisms in sFrob_. In fact, these operations can construct all
morphisms n — 0 in the monoidal category of relational structures with sources.

4.2 Matrices

Matrices over the natural numbers are often used to encode the adjacency relation of graphs and are the
basis for the graph algebra presented in Section 4.3. This section recalls Proposition 4.18, a result that char-
acterises the algebra of matrices in terms of the generators and equations of a bialgebra (Figure 4.3). The
characterisation of the algebra of graphs in Section 4.3, Theorem 4.44, relies on this result.

Matrices are the morphisms of a prop.

Definition 4.16. The category of matrices Maty is the prop whose morphisms n — m are m by n matrices.
Composition is the usual product of matrices and the monoidal product is the biproduct of matrices A &

B:=(53)

A syntax for matrices

The syntax for the prop of matrices is given by a commutative monoid (o, o), interpreted as adding and
zero, and a cocommutative comonoid (—€_, —e), interpreted as copying and discarding. These interact ac-
cording to the laws of a bialgebra.

Definition 4.17. The prop Bialg is freely generated by a bialgebra, whose generators and equations are given
in Figure 4.3.

The free prop generated by a bialgebra is isomorphic to the prop of matrices. Proofs of this result can be
found in Zanasi's PhD thesis [Zan15, Proposition 3.9] and in [BSZ17, Proposition 3.7].
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Figure 4.3: Generators and equations of a bialgebra.

Proposition 4.18 ([Zan15]). There is an isomorphism of categories Mat : Bialg — Maty,.

Every morphism f : n — min Bialg corresponds to a matrix A = Mat(f) € Maty(m, n): we can read the
(i, j)-entry of A off the diagram of f by counting the number of paths directed from the j-th input to the i-th
output. These paths do not include paths that “go back” through a multiplication or comultiplication node.

10
Example 4.19. The matrix A = ( 1 %> € Maty(3,2) corresponds to the morphism a: 2 — 3 below. The

columns are the inputs and the rows are the outputs: the two distinct paths from the second input to the
second output and the absence of paths from the same input to the third output are recorded by a 2 in the
entry (2,2) and a 0 in the entry (3, 2) of the matrix A.

o—

Remark 4.20. By Theorem 3.24, the monoidal width of a matrix A = A; @ --- @ A, is the maximal rank of
its blocks,

mwd(A) = maxbrk(Ai),

i=1,...,

because the monoidal unit O is also a zero object.

4.3 Graphs with dangling edges

This section introduces the prop of graphs with dangling edges. Morphisms represent graphs with additional
“dangling edges” and composition joins two graphs by connecting their dangling edges. We define this alge-
bra explicitly (Definition 4.25) and give an equivalent syntactic presentation (Definition 4.42). We show their
isomorphism by finding a normal form for morphisms in the syntactic presentation. The diagram below sum-
marises the proof strategy: Proposition 4.30 shows that the prop of graphs with dangling edges, MGraph, is
the coproduct of a prop of adjacency matrices, MAdj, and a prop of bounded permutations, boundP; Theo-
rem 4.39 and Proposition 4.41 give equivalent syntactic descriptions of adjacency matrices, Adj, and bounded
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permutations, Vert, based on the bialgebra characterisation of matrices; finally, the syntactic presentation
of graphs with dangling edges is defined as their coproduct, BGraph:= Adj + Vert.

MAdj L} MGraph '%2 boundP
I
Theorem 4.39\L \E/Theorem 4.44 l/Proposition 4.41
Adj ——»> BGraph <— Vert
The algebra of graphs with dangling edges relies on adjacency matrices to encode the connectivity of vertices.
These are matrices quotiented by an equivalence relation that captures that there are different ways of

expressing the same connectivity information: if there are two edges between vertices i and j of a graph G,
then this can be recorded in the entry (i, j) or (j, i) as long as their sum is 2.

Definition 4.21. An adjacency matrix [G] is an equivalence class of square matrices G € Maty (m, m) over
the natural numbers, where the equivalence relationis [G] = [H]iff G+ GT = H + HT.

Adjacency matrices on m vertices are the morphisms 0 — m of a prop where generic morphisms repre-
sent adjacency matrices “with inputs”. These are an adjacency matrix together with a matrix of compatible
dimensions that connects the inputs to the adjacency matrix. This prop is defined in [CS15], where it gives
an algebra for simple graphs. Our graph algebra captures multi-graphs but follows a similar idea.

Proposition 4.22 ([CS15]). There is a prop MAdj where morphisms a : n — m are pairs a = (B, [G]) of an m
by n matrix B € Maty(m, n) and an m by m adjacency matrix [G].

Proof. The composition of two morphisms (B,[G]): n —» mand (C,[H]): m — [ is defined as (B,[G]) §
(C,[H]):=(C-B,|[C-G-C" + H|): n— I.Theidentity on nis (1,, [0]). The monoidal product on objects
is addition, while on morphisms it is the component-wise biproduct of matrices, (B, [G]) Q(B’, [G’] ):=(B®
B, [G (4> G’]), with monoidal unit 0. Composition is well-defined on equivalence classes of adjacency ma-
trices. Suppose (B, [G]) = (B, [G']) and (C,[H]) = (C, [H']). This means that G + GT = G’ + (G')" and
H+H"=H +H)".

(CGCT + H)+(CGCT + H)"

=CGC"+CG'CT+H+HT

=C(G+GHCT+H+H'

=CG'+(GHHCT+ H +(H')T

=cG'c"+cG)'CT+H +H)T

=(CG'C"+H)+ (G CT + H)T

Then, composition preserves equivalence of adjacency matrices.

(B,[G]) 5 (C,[H])
==(C-B,[C-G-C" +H|
=(C-B,[C-G'-C"+H'])
=:(B,[G'])s(C.[H'])

For the monoidal product, it is easier to see that it preserves equivalence of adjacency matrices because, if
G+G'=G'"+G) andH+H ' =H'+(H') ", then(GOEH)+( GO H)' =G ®H)+ (G & H').



4.3. GRAPHS WITH DANGLING EDGES 47

For (A,[F]): p— n,(B,[G]): n—> mand (C,[H]): m — I, we show that composition is associative.

(A, [FD) 5 (B,[G]) 5 (C,[H]) (A, [F]) 5 ((B,[G]) § (C,[H]))
= (BA,[BFB' +G|)3(C,[H)) = (A,[F])$(CB,[CGCT + H])
= (CBA,[C(BFB" + G)CT + H|) = (CBA,[CBF(CB)' + CGC" + H])

= (CBA,[CBF(CB)" + CGC" + H])

For (B,[G]) : n - m, we show that composition is unital.

(B,[GD 35 (1,,[0D (1,,[0D 5 (B, [G])
=, B, |1, -G-1] +0]) =(B-1,[B-0-B"+G])
= (B,1G)) =(B,[G)])

For (B,[G): n— m,(C,[H): m - I,(B',[G']): ' — m’ and (C’, [H']): m' — I', we show that the
monoidal product preserves their composition.

(B.[G)® (B, [G']) 5 (C.[H) ® (C', [H']))

=B@®B.[Gad])s(CaC [H®H')

=(CoCB®B).[(COCHNGOGNCHC) +(H®H)))

=(CB)® (C'B).[(cGCH @ (C'G'C'y+ (H & H")))

=(CB)® (C'B'), [(cGCT + H)® (C'G'(C)T + H")))

=(CB,[cGCT + H))® (C'B',[C'G'(C")" + H'])

= ((B.,IGD 3 (C,[HD) ® (B, [G']) 5 (C’, [H']))

The monoidal product preserves identities.

(1,,[0D & (1,/,[0D
= (‘]]n @ ﬂn/,[®®®])
= (1,4, [0D)

The monoidal product is associative and unital because the objects are natural numbers and the monoidal
product is addition. ]

The ordering of vertices in a graph is immaterial, but adjacency matrices fix one. Graphs are adjacency
matrices where the vertices can be arbitrarily permuted, so they are obtained by adding to the prop of
adjacency matrices the possibility of permuting some of the wires, those connected to the vertices. We
introduce the prop of bounded permutations to capture this aspect: morphisms are permutations where
some of the outputs can be freely permuted.

Definition 4.23. A bounded permutation p = (k, P) is a pair of a natural number k € N and a permutation
matrix P € Maty(m + k, m + k). Two bounded permutations p = (k, P) and ¢ = (k, Q) are equivalent if

there is a permutation ¢ € Maty(k, k) such that P = ( ]]6" 2 ) - 0.

In a bounded permutation (k, P), the number k gives the number of outputs that are “bounded” and
can, thus, be permuted without changing the morphism. Bounded permutations are the morphisms of a
prop.
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Proposition 4.24. Bounded permutations form a prop boundP where morphisms p: m + k — m are equiv-
alence classes of bounded permutations p = (k, P).

Proof. The composition of two bounded permutations (k, P): m+ j+k > m+jand (j,Q): m+j > m
is defined as (k, P) § (j,Q):=(k + j,(Q & 1) - P), and the identity morphism on m is (0,1,,): m — m.
The monoidal product on objects is addition, the monoidal unit is 0 and, for two bounded permutations
(k,P): m+k — mand k', P'): m’ + k" - m’, their monoidal product is (k, P) @ (k’, P'):= (k+ k', (1,, ®
Crm D1pr) (P® P")), where o 1S the permutation matrix that swaps the first k inputs with the remaining
m’ inputs. Thanks to the string diagrammatic syntax for matrices, the permutation matrices associated to a
composition and a monoidal product are, in string diagrams,

With this, it easy to see that composition is associative and unital. Composition is well-defined because, if
(k, P) = (k, P')and (j,Q) = (j,Q'),then P = (1, ®0o)- P,O=(1,®1)- 0,

m m m ; m m ; m
J -E i = ,HZ,- = . j
k k k —Tfo}——— &k k (o] k

and (1,0 -P' =(1,,®td0)-(1,dQ")-P'). So (k, P)3(j, Q) = (k, P")s(j, Q"). The monoidal product is
also well-defined because, if (k, P) = (k, P")and (j, Q) = (j,Q'),then P = (1,,®0)- P/, 0 =(1,®71)- 0,

>~ 3
=)
S 3

~ 3
~

and (1,,®0,,01,)-(POQ) = (1,,,,®507)-(1,,H0,,,B1,)-(P'®Q"). So (k, P)®(j, Q) = (k, P)®(j, Q).
The monoidal product is a functor: ((k, P)®(k’, P")3((, Q)®(’, Q") = ((k, P)3(j, Q) ®((K', P")3(j’, Q"))
because their matrices are equivalent up to permuting the “bounded wires”.

m
k0
k
m!
kG
k/

The monoidal product is strictly associative and unital because, on objects, it is addition of natural numbers.
O

|
<3 ~ 3
’J_h"i—["-‘—h"i‘-‘
=l
AN ~I I

™3 s
Il

k/

Graphs with dangling edges inherit the algebra of adjacency matrices and mix it with that of bounded
permutations. In fact, Proposition 4.30 shows that the prop MGraph of graphs with dangling edges is the
coproduct of MAdj and boundP. Graphs with dangling edges have three connectivity points: the left and right
boudaries, and the vertices. These are connected between each other and themselves with five matrices.

Definition 4.25. Graphs with dangling edges are tuples g = ([G], L, R, P, [S]), where each matrix encodes
part of the edges:
e G € Maty(k, k) the edges of the graph, with k the number of vertices;
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L € Maty(k, n) the dangling edges to the left boundary;

R € Maty(k, m) the dangling edges to the right boundary;

P € Maty(m, n) the passing edges from the left to the right boundary; and

S € Maty(m, m) the edges from the right boundary to itself.

Two graphs with dangling edges ¢ = ([G], L, R, P,[S])and g’ = ([G’] ,L', R’, P', [S"]) are equivalent if
there is a permutation matrix o € Maty(k, k) such that

g = ([G.G-GT],O"L,O"R,P’[S])'

The equivalence relation of graphs with dangling edges captures that the order of the vertices is imma-
terial. Graphs with dangling edges can be composed and are the morphisms of a prop.

Proposition 4.26. Graphs with dangling edges form a prop MGraph where morphisms g : n — m are equiv-
alence classes of graphs with dangling edges g = ([G], L, R, P,[S]) as in Definition 4.25.

Proof. Given two graphs with dangling edges g: n —» mand h: m — [, with g = ([G], L. Ry, P, [Sg])
and h = ([H], Ly, Ry, Py, [S,]). their composition g s h: n — Iis

G R Ly R, P] .
( [( 0 H+L,S,L} >] ’ ( LyP; ) Ry+Ly(Sg+S])P] s Pr Py, [Sh + PpSg Py :

Composition is associative.

(fs58)sh
F  R;L! L R;PT
= = (4,) I PPy S+ PSPl | ) 3
([(@G+Lg5,~L;>]’ L,Pr )° Rg+Lg(Sf+S}')PgT [l Sl A e 4 g f g 9
T TrT TpT
F  R.L] RePIL] L Ry P[P
T TypTy1 T TypTypT
= ||| 0 G+LeS/L] (Re+Lo(Sp+SHPDIL] < L, P, > (Rg+Ly(Sy+STIPT)P] i
0 0 H+Ly(Sy+P,S;P)L] LnPePr 7\ Ryt Li(Sg+PySpP]+S]+P,STPIPT
T\pT
PuP Py Sy + Pi(S, + PS PDP] |
F  R/LT R;PTL] R;PTPT
g ] Ly, 5 h
T T TypT pT
= 0 G+LgSfL; (Rg+LgsngT)Lh , < L Py > Ry Pl +Ly(S;+S )P/ P ,
O LyPySpLl H+Ly(Sg+PSyPL] EnbePr /| Ry+Li(Sy+S]+Py(Sp+SHPDPT

PPy | Sy + PySyP + PyPyS PTPY |

— o G RKLZ Lg RgPhT T
=r53 <[< 0 H+L,S,L} >] ’ <L;.Pg ) Ry+Ly(Sg+S)P) » Pr Py [Sh + PthPh]
=f5(gs5h

Composition is unital.

oo

gs1

m
G R im L R 1]m
= <[( Ly ()+!f,sgim )] , ( L Py ) ( im+1m(;g+sg)nm ) TPy, [0+ “mSgﬂmD

o
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[G]. Ly Re. Py, [Si])

I
o

_ O Ll ., WET ]
_<[(;,, G+L@LT>]’<L3]”>’<Rg+Lg®PgT g n,[S +P®P ]

[G].L,.R,. P,.[S,])

Given two morphisms g = ([G], L, R, P,[S])and ¢’ = ([G'] . L', R’, P’, [S']), their monoidal product
is
g®g=([God|.LoL’ . R&R.POP. [S®S]).

The monoidal product is functorial.

(gsh® (g sh)

G R,L] L R PT
= ([( 0 H+Lghs';L; >] ; <L,f§>g ) < R,,+Lh(§gis;)p; ),Pth, [Sh+ PSP )
G’ R (LT L R.(P)YT
® <[< 0 H’+IZSE(LZ)T >] ’ <L;j>£ > (RZ+L2(SZ+(}I§£)T)(P}/I)T > PP, [S,’l + P;lSé(P}’l)TD
((euitia o)
0 H+L,S,L} 0 H'+L,SI(L))T >
(23)® (2 ) (oo ) @ (i)
Ly P, Ly Py )* \ Ry+Ly(Sy+S))P] R +L, (SLHSHTPDT )

PP @ PLPL[(S)+ PyS,P)) & (S} + P,;S;(P;l)T)D

GO0 R 0 L, 0 R PT 0
U ! I\T ! / INT
_1; 0G 0 R(L}) R 0 L . 0 R (P))
0 0 H+L,S,L] 0 | LrPe O Pl RyALy(Sg+S)PT 0 ’
Fagl orp\T o L P ’ T\ INTy p/\T
00 0 H'+L) Si(L}) h'g 0 Ry +L; (S, +(Sy) )(Py)
PP, O Sp+Py Sy PY 0
o PP ) 0 S)+PSLPHT
GO RS 0 L, 0 R, PT 0
- 0 G 0 R;(L;)T @ L; 0 R;(P,;)T
- 0 0 H+L,S,L; 0 | LaPe O ) Rh+Lh(S +SHPT 0 ’
00 0 H'+L, LT 0 LyP, R+ (Sh+(S)TP)T

PP, O Syp+PyS Pl
o PP ) 0 S’+P/S’(P )T

(G o L, 0 R, 0 P@ Sg@
= ([(5 &) 0L ) @R;’ @P’ @Sg
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(152009 5)- (9 ) (5[ (o)1)

=(e®g)3h®n)

10
_f[ oo
wherer—<@l
00

Proposition 4.30 shows the universal property of MGraph as a coproduct. The intermediate results in
Lemmas 4.27 to 4.29 define the inclusions and show the factorisation system of MGraph. The inclusions
indicate that adjacency matrices and bounded permutations are graphs with dangling edges of a particular
shape.

) permutes the order of the vertices. O

Lemma 4.27. There are two homomorphisms of props 1; : MAdj — MGraph and 1, : boundP — MGraph.
Proof. The inclusions are identity on objects and, on morphisms, are defined by
1; : MAdj —» MGraph 1, : boundP — MGraph
(B7[G])'_)([()]s LR IR ’[G]) (k7P)'_)([®k]7P29®7P17[@])

where P = < 2 ), with P; € Maty(m, m+ k) and P, € Maty(k, m+ k). These are homomorphisms of props.
They respect composition.

1,(B,[G]) 5 1,(C,[H]) 1a(k, P) 5 15(j, 0)
= ([01.5 1 B,[G1) 5 ([O1,!, 1, C, [H]) = ([04] . P, 0, P, [0]) 5 ([0;] . ©,.0,0,.[0])
= (I01,%,!,CB, [H + CGCT)) = ([0ss] (o )-0-01P1.101)

:11(CB, [H + CGCT])

IR

= ll((B’ [G]) ; (C7 [H])) = lZ(k +J7

X
(0150 00
(

|
)
~~
»
+
~.
A
S~
~
N

n((k, P)s (J, Q)

They respect identities.

1,(1,,[0D) 1,(0,1,)
= (101,44, 1,,101) = (101,11, 1,,10])
=1, 1,

They respect the monoidal product.

1(B,[G) @ 1, (B, [G']) 1k, P) ® 1,(k', P")
= ([01,L L BIG]) @ (I01.L L B, [G']) = ([04] . P, 0, P, [0]) ® ([0 ], P;,0, P/, [0])
=([01...\B® B, [GG) = ([044x'] . P, ® P;,0, P, & P/, [0])

1 (B® B, [GHG))

P,®P/
‘i (k + K, (P;BPE )
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=1,((B,[G]) ® (B',[G']) =nk+K. (1, @0,y ®1)(5)
= 1,((k, P) ® (K, P'))

The inclusions of MAdj and boundP into MGraph characterise all morphisms.

Lemma 4.28. Morphisms g: n — m in MGraph split as g = 1,(a) § 1,(v), for some a: n — [ in MAdj and
v: | = minboundP, uniquely up to permutations.

Proof. A morphism g = ([G], L, R, P,[.S]) with k vertices in MGraph(n, m) splits as a composition.
g=(G],L,R, P,[S]D
= ([OL 4 bt (£)- [(2 2)]) 5 ([04] - 011, 0,(1,,]0), [0,,])
=u((7). [(R&)D 30k 1,0
=1(a) § 1,(V)
Suppose that the same morphism g splits as g = 1;(B, [T]) § (K, P,) = 1;(a’) 31,(v") as well. We show that
there is a permutation 7 suchthata =d’ §rand v/ = 7 5 0.

Then, P, € Maty(m’ + k', m’ + k') is the matrix corresponding to a permutation = and m’ = m because
(K',P,): m'+k' - m' g: n— mand their codomains must coincide. This permutation matrix splits along

its rows as P, = ( 2 ), with P, € Maty(m,m + k") and P, € Maty(k’,m + k') and the second factor of g
splits with the permutation z: (k/, P,) = (0, P,) ¢ (kK', 1,y y0r) = 7§ (K, 1 piir)-

g =n(B,[Th 5K, P,)
=B, [T 5175 (k' Vi)
=1(B,[TD 7 51,K, Toit)
=1 ((B,[TD37) § 1K', 1 p4r)
=1 (P.B,[P,TP])31,(K', 1,440
= ([O). 4y i PeBL[PTP]]) 5 ([00r] . (0114, 0.(1,,]0), [0,,])
= ([P,TP]]|.P,B, Py T + TP, P,B,[PTP]])

Then, we can rewrite the components of g in terms of P,, Band T'.

[G] = [P,TP]|

L=PB
R=Py(T+THP]
P=PB

[S]1=[PTP]
As a consequence, k = k’ and we can relate the two factorisations.
(1) (78]

_(PB _ P TPIT 0
kB P(T+TTP| P,TP]
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B _ PTP| PTP]
=FB ~ |\ nTP] PTPT
= [P,TP]]
Then, (7). [(%2)]) = (P.B,[P,TP[]) = (B,[T] 3. O

By Theorem 2.16, this result means that MGraph is a composite prop. The next result ensures that MGraph
is, in particular, the coproduct of MAdj and boundP.

Lemma 4.29. For any two prop morphisms a: MAdj - P and v : boundP — P,
v(k, P)5a(B,[S]) = a(B® 1P, [S @ O]) 5 v(k, 1,,4) -

Proof. We compute the composition using that a and v are prop morphisms. We use the red functor boxes
for v and the blue ones for a. We indicate with the costate k the morphism (k, 1) in boundP, with b the
morphism (B, [S]) in MAdj, and with op the permutation in MAdj, boundP or P corresponding to the per-
mutation matrix P.

v(k, P) s a(B,[S])
=v(op (1, ® (k, 1)) 5a(B,[S])

= 4 6]
E‘,,

L—;;T
Gl

AN

= ﬂT@

ﬁ
5
S

ﬁ

g
)

=a(op 3 (B, [SH® 1)) 5v(1, ® (k, 1))
=a(B® 1P, [SDO]) s v(k,T,,1)

=)

With these results, we can show the universal property of MGraph.

Proposition 4.30. The prop of graphs with dangling edges is the coproduct of the prop of adjacency matrices
and that of bounded permutations: MGraph = MAdj + boundP.
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Proof. By Lemma 4.28, we can apply the result on composition of props [LacO4, Theorem 4.6], recalled in
Theorem 2.16, to the prop MGraph to obtain that it is the composition of MAdj and boundP via a distributive
law A: (1,(v) | 11(a)) = (1;(d) | 1,(D)). In particular, for any two prop morphisms a: MAdj — P and
v : boundP — P such that v(v) s a(a) = a(a) ; v(D), there is a unique prop morphism h : MGraph — P such
thata =1, §hand v =1, § h. By Lemma 4.29, any two prop morphisms a: MAdj — P and v: boundP — P
satisfy v(v) ¢ a(a) = a(a) § v(0), which means that any two such morphisms define a unique prop morphism
h: MGraph — Psuchthata = i §hand v = 1, § h. This is equivalent to say that MGraph satisfies the
universal property of the coproduct of MAdj and boundP. O

A syntax for graphs with dangling edges

We give a syntactic presentation of graphs with dangling edges by giving syntactic presentations of its compo-
nents MAdj and boundP. The string diagrammatic syntax for adjacency matrices relies on the characterisation
of matrices as a bialgebra but needs the addition of a “cup” generator C: 0 — 2 (Figure 4.4) that captures
the equivalence relation of adjacency matrices (Lemma 4.36). Theorem 4.39 shows that Adj is a syntactic
presentation of MAdj.

Definition 4.31. The prop Adj is presented by the generators and equations in Figures 4.3 and 4.4.

C

C-OX é@ -

Figure 4.4: Additional generator and equations for the prop of adjacency matrices (Figure 4.3 contains the
rest of generators and equations).

As recalled in Section 2.1, presenting a prop with generators and equations corresponds to taking a co-
equaliser in the category Prop of props and their morphisms. The generators and equations in Figure 4.4
indicate that Adj is the coequaliser of two prop morphisms s,t: A — Bialg + Cup. The prop A is freely
generated by two morphismsa: 0 — 3and b: 0 — 1, while the prop Cup is presented by a cup morphism
C: 0 — 2 and quotiented by the first equation in Figure 4.4. The prop morphisms are defined inductively
by their images on the generators of A.

s(a):=( : t(a):=
s(b):= t(b):=0—

The isomorphism between the props Adj and MAdj is proven in [CS15, Theorem 4.2] by defining a prop
morphism Adj - MAJj inductively and showing that it is an isomorphism. We rely on the same arguments
but give a slightly different proof. We show that MAdj also satisfies the universal property of the coequaliser

(4.1)



4.3. GRAPHS WITH DANGLING EDGES 55

of s and t. The isomorphism ¢ : MAdj — Adj defined in Theorem 4.39 captures the normal form of mor-

phisms in Adj.
2] 42

¢: (B,[G]) —~ . S

This notation implicitly relies on the isomorphism Bialg = Maty, of Proposition 4.18: a box indicates
the image of the matrix A under the isomorphism Mat~! : Maty, — Bialg.

The proof that MAdj is the coequaliser of s and t first constructs a candidate coequaliser map q : Bialg +
Cup — MAdj and then shows the universal property for it. The prop morphism q is defined as a coproduct
map of prop morphisms b : Bialg — MAdjand ¢: Cup — MAJ]. The morphism b is the composition of the
isomorphism Mat : Bialg — Maty and the prop morphism j : Maty, — MAd] described in Lemma 4.32.

Lemma 4.32. There is a morphism of props j : Maty — MAdj from the prop of matrices to that of adjacency
matrices defined by j(A):= (A, [0]).

Proof. We check that j preserves compositions, identities and monoidal products.

j(A)5j(B) i) A ®jiA)
:= (A, [0]) 5 (B.[0]) =(1,,[0,]) = (A,[0) ® (4, [0])
:= (BA, [BOBT +0)) =1, =A@ A, [0 0)
= (BA,[0]) =(A® A, [0])
=:j(A5 B) =j(A® A"

There is a morphism in MAdj that behaves like the cup C.

Lemma 4.33. There is a morphism of props ¢ : Cup — MAJ] defined by
(@)= (- [(§ )] -

Proof. We define the mapping ¢ on the generator as ¢(Q):= (i, [(§ § )]), which, using the isomorphism
Mat : Bialg — Maty, becomes

e = (Mat (J). [Mat (X)]) .

The image on the rest of the morphisms of Cup is defined inductively, so we need to check that the equation

of commutativity of the cup holds. We use the equivalence relation of adjacency matrices for (99) ~ ().
c(C5 X0
=¢(Q5e(X0)

= (Mat () [Ma ()] )5 (Mo () [t (23 7))

= (v () P () o (2 )
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= (2. [(§
(@)

)b

(=T

O

The prop morphism q : Bialg+Cup — MAdjis the coproduct map of the prop morphisms b and ¢ defined
in Lemmas 4.32 and 4.33. The morphism q also coequalises s and t.

Proposition 4.34. The coproduct map q:= [b, ¢] is a coequalising prop morphism q : Bialg + Cup — MAJ;]
of the pairs,t : A — Bialg + Cup.

Proof. The prop morphismb : Bialg — MAJjis defined as the composition of the isomorphism Mat : Bialg —
Maty, recalled in Proposition 4.18, with the morphism j : Maty — MAdj, defined in Lemma 4.32. The prop
morphism ¢ : Cup — MAdJj is defined in Lemma 4.33. We show that their coproduct map q is a coequalis-
ing morphism of s and t by computing the images of s § q and t § q on both the morphisms a: 0 — 2 and
b: 0 — 1 of the prop A. For both computations, we use the definition of q as a coproduct map.

q(s(a)):=q|( :
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=:q(t(a))

q(s(b)):=q (( >

a(()sa(Z)

«()m(*)

(Mat (i) , [Mat (X)]) : <Mat (1) ,[Mat (—e %)])
<Mat (;) , [Mat (%) + Mat (—e O—)])

= (Mat (0—), [Mat (—e 0—)])

=q((©—)
=:q(t(b))

O

We show that the prop morphism q satisfies the universal property of coequalisers. For every coequal-
ising prop morphism p : Bialg + Cup — P of the pair s,t : A — Bialg + Cup, Proposition 4.38 defines a
candidate extension p : MAdj — P of p to MAdj. Theorem 4.39 concludes by showing that p is the unique
extension of p along q. For constructing the candidate extension p we need to investigate some properties
of the coequalising morphism p that are consequences of the cup axioms in Figure 4.4. Those equations
imply that the cup quotients by transposition.

O

This equation holds in Adj and also in the image of any coequalising morphism of s and t.

Lemma 4.35. For any coequalising morphism of props p : Bialg+Cup — P of the pairs,t: A — Bialg+Cup

in Equation (4.1),
A

Proof. By Proposition 4.18, every morphism A: n — m in Maty can be written as compositions and mo-
noidal products of finitely many of its generators. These generators are the images under the isomorphism
Mat : Bialg — Mat of the generators in Figure 4.3. By these considerations, the proof can proceed by struc-
tural induction on the morphisms. For the base cases, Equation (4.3) holds for the bialgebra generators
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because p is a coequalising morphism for sand t,ssp =t §p.

p|( C =p(s(a)) = p(t(a)) = p
<< ) = p(s(b)) = p(t(b)) =p (0—)

The two remaining equations follow by commutativity of the cup. For the inductive steps, suppose that
Equation (4.3) holdsfor A: n — m, B: m — [l and A’ : n/ — m’. We show that it holds for A § B and for
A @ A’. We indicate p with a blue functor box.

=

=[]
T

[4J—2]

;

f
=]

E
T
T

AT

T
S
|
¥

Iy
STl

I
]

TH-

&
-

=[]
e
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i Oy

e

A consequence of this result is that equality in the prop of adjacency matrices captures the equivalence
relation of adjacency matrices. Recalling Definition 4.21, two adjacency matrices are equivalent, [G] = [H],
if and only if they are equal up to transposition, G + GT = H + H". In string diagrams, this is

G- (o

and holds in Adj and the image of any coequalising prop morphism of s and t.

O

Lemma 4.36. For two adjacency matrices [A] and [ B], and any coequalising morphism of props p : Bialg +
Cup — P of the pairs,t : A — Bialg + Cup in Equation (4.1),

if  [A]=[B] then p( >=p<>.

Proof. Proceed by induction on the size n of the matrices. For n = 0, there is only one morphism 0 — 0
in Maty so the statement is trivially true. For the induction step, suppose that the statement is true for any

two n by n matrices A’ and B’ and consider two n+ 1 by n+ 1 matrices A = ( Al ‘;) and B = ( f// f ) Notice

a/

that the two matrices are equivalent, [A] = [B], if and only if [A’] = [B’], ad+a" =0 +b"andi = j,
because 2 -i = 2 - j implies i = j. By induction hypothesis, [A’] = [B’], ad+a" =0 +b"andi = jimply
the corresponding equalities in the image of p.

(o)
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By the bialgebra axioms (Figure 4.3) and Lemma 4.35, we can do the rewrites below foranyn + 1 by n + 1
square matrix M = (N ).
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With these equalities, we obtain that

(0 )o() |

Example 4.37. The matrices G = (9}) and H = (99) are equivalent as adjacency matrices. In fact, their

string diagrams are equal up to the equations of Adj.
(=5
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- (=5
Thanks to Lemmas 4.35 and 4.36, the mapping ¢ : MAdj — Adj given in Equation (4.2) is a prop mor-

phism. More generally, for every coequalising prop morphism p : Bialg + Cup — P of the pairs,t: A —
Bialg + Cup, these results allow us to define a candidate extension p : MAdj — P.

Proposition 4.38. Any coequalising prop morphism p : Bialg + Cup — P of the pairs,t : A — Bialg + Cup
in Equation (4.1) induces a prop morphism p : MAdj — P given by

ro(B,[G]):=p< > )

Proof. By Lemma 4.36 and functoriality of p, the assignment p is well-defined on equivalence classes of
adjacency matrices: if (B, [G]) = (B,[H]), then p(B, [G]) = p(B, [H]) because

). ).
Applying Lemma 4.35, we check that p preserves compositions.

p((B,[G)) 5 (C,[H])
:=p(CB,[CGCT + H))
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=:p(B.[G]) s P(C.[H])

The hypothesis that p is a coequalising morphism implies that p(s(b)) = p(t(b)) and that p preserves identi-
ties.

Finally, we check that p preserves monoidal products.

P(B.[G]) ® (B, [G']))
=pB@®B.[Gad)

:p(B.[G) ® p(B'. [G'])

O

The candidate coequaliser of Proposition 4.34 is, indeed, a coequaliser. This follows from checking that
the candidate extension of a coequalising prop morphism p in Proposition 4.38 is an extension of p along q
and is unique. In particular, the prop morphism ¢ defined in Equation (4.2) is the extension of the coequaliser
map Bialg + Cup — Adj. Then, ¢ : MAdj — Adj is an isomorphism and gives a normal form for morphisms
in Adj.
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Theorem 4.39. The prop Adj is isomorphic to the prop MAd] of adjacency matrices via the isomorphism
¢ : MAdj — Adj defined in Equation (4.2).

Proof. Proposition 4.34 provides a candidate q : Bialg + Cup — MAdj for the coequaliser of s and t, and
Proposition 4.38 defines a morphism p : MAdj — P for any coequalising morphism p : Bialg + Cup — P.
The prop morphism q is the coequaliser if p is the unique prop morphism such that q ¢ p = p. Since q is a
coproduct map, its composition with p is also a coproduct map

q;p=I[bsp,cspl

and we can check that the desired equality holds by checking the components separately. We implicitly use
that Mat is an isomorphism.

pibfzfl(j)_)l(m)) 5(c(C))
- ot (). o <TTD

(=(Q))

Suppose that there is another morphism r : MAdj — P such that q § r = p. We check that r must coincide
with p.

()

=p<) =p

= p(;;(Mat™!(A)))

r(B.[G])

=~ (((

co =
S~
—
A/
[SR=I=}
[=N=E=}
© =0
S~
[S—"
~—
o
—~
®
=
~—
—
(=}
=
=
S~

_ 12—,
(25 )
=:p(B,[G])
This shows that MAdj is the coequaliser of s and t, but so is Adj by its definition. Colimits are unique up to the

unique isomorphism given by extensions, so the prop morphism ¢ : MAdj — Adj defined in Equation (4.2)
is this isomorphism. L]
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We will add vertices to adjacency matrices to obtain graphs, but, first, we study vertices on their own.
The prop Vert is freely generated by a “vertex” 1 — 0 generator, so morphisms are permutations with some
outputs bounded by vertices.

Definition 4.40. The prop Vert is freely generated by one v: 1 — 0 generator and no extra equations
(Figure 4.5).

-0

Figure 4.5: Generator of the one-vertex prop.

Graphs are adjacency matrices with vertices. The prop Vert is isomorphic to that of bounded permuta-
tions, boundP, via the isomorphism that composes the bounded outputs with vertices.

v:P)= P g "
k

This defines an isomorphism because we can check initiality of boundP.

Proposition 4.41. The freely generated prop Vert is isomorphic to that of bounded permutations, boundP =
Vert.

Proof. We show that boundP also satisfies the universal property of Vert: it is initial among the props with
a1l — 0 morphism. Let P be a prop with a morphism v: 1 — 0 and define H: boundP — P as identity on
objects and, on morphisms, as

H(k, P,):=735(1,, ® V") = ’,”{’" :

where P, is the permutation matrix corresponding to the permutation z and v¥ is the k-fold monoidal prod-
uct of v with itself. Then, H(1, 1;) = v and H is well-defined on equivalence classes by naturality of the
symmetries in P.

H(k,(1,, ® F,)P,)

=il Te "
=il e "

=:H(k, P,)
The definition above gives a functor because H preserves identities,
H(©O,1,):=1,,,
and preserves compositions.

H(k, P,) s H(j, F;)
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=H(k+j,(P,® 1,)P,)
=H((k,P,)5(,P,)) .

The functor H is unique because any other prop morphism F : boundP — P such that F(1, T,) = v must, by
functoriality of F, coincide with H.

F(k, P,)

=F((0, P,)3((0,1,) ® (k. 1))
=F(r5(1,® 1, 1))
=F(2)5(F(1,) @ F(1,1)"
=75(1, ® v

=:H(k, P,)

The prop of graphs is the coproduct of that of adjacency matrices and that of vertices. Coproducts of
props presented by generators and equations are presented by the disjoint union of the generators and of
the equations of the components [LacO4] (see also [Zan15, Proposition 2.11]).

Definition 4.42. The prop of graphs BGraph is the coproduct of the props Adjand Vert, BGraph:= Adj+ Vert.
Its generators and equations are in Figures 4.3 to 4.5.

Example 4.43. The string diagram below on the left is a morphism 1 — 1 in BGraph that represents a graph
with two vertices connected by an edge. The vertices are also both connected to the right boundary, while
only one of them is connected to the left boundary. This corresponds to the informal drawing of the graph
below on the right.

-w —e— 0 —

As with the isomorphism between the props of adjacency matrices, the isomorphism MGraph = BGraph
gives a normal form for morphisms in BGraph. This is the coproduct of the isomorphisms ¢ : MAdj =~ Adj
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and y : boundP = Vert.

0: (G],L,R,P,[S])

Theorem 4.44. The prop of graphs BGraph is isomorphic to MGraph.

Proof. By Proposition 4.30, the prop MGraph is the coproduct of MAdj and boundP. The prop MAd;j is iso-
morphic to Adj by Theorem 4.39 and the prop boundP is isomorphic to Vert by Proposition 4.41. These imply
that MGraph is isomorphic to the coproduct BGraph of Adj and Vert (Definition 4.42). O

The operations for clique width and rank width

This section repeats the prodedure of Section 4.1 for clique and rank widths. It takes the operations for
clique width of Definition 2.35 introduced by Courcelle and Olariu [CO00] and the operations for rank width
of Definition 2.56 introduced by Courcelle and Kanté [CKO7], and examines them through a categorical lens.
This time, the monoidal category BGraph specifies the categorical algebra and the operations for clique
and rank widths derive from compositions and monoidal products in BGraph. This correspondence defines
functions from graphs with labels and graphs with multiple labels to morphisms » — 0 in BGraph. An n-
labelled graph (G, I) corresponds to the morphism ([G] ,L,i, 1L I( )]),where the entry (i, j) of the matrix L
is 1 if and only if [(i) = j. The matrix L is composed only of comonoid operations and symmetries. Similarly,
a graph (G, B) with multiple n-labels corresponds to the morphism ([G] ,B,i, ' [( )]).

The various presentations of the operations for clique width [CER93; CO00; CV03] and rank width [CKO7;
CKO09] define equivalent complexity measures. This becomes apparent when we express these operations as
compositions and monoidal products in BGraph and its categorical structure becomes the canonical choice
for the operations that define clique width and rank width. Chapter 6 proves this in detail.

The generating graphs for clique width and rank width are the same morphisms in BGraph. The 1-labelled
empty graph @, is the discard map —; : 1 — 0, while the 1-labelled single vertex graph v, is the vertex
generatorvy : 1 — 0.

g, » 1—e and vie 1 —@

The operations for clique width derive from the categorical structure. The renaming Rename"j_)i(G, D)
of label j to label i corresponds to precomposing the morphism g that corresponds to the graph (G, I) with
amatrixd; ; : n — n+ 1 that joins the i and j" outputs.

ith

- 1
l-rh
. _ n+1 o :
Rename”;_;(G,]) — n—di, B where  d, ;:= : th

J
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The creation of edges Edge”[,j(G, 1) between the labels i and j is also a precomposition. We compose the

morphism ajjin—n which connects the i and j* outputs through a cup, with the morphism g that

corresponds to (G, I).

Edge", ;(G.)) = n—as}"{¢)  where a;;i=

The disjoint union (G, I)+(H, I") of an m-labelled graph (G, I) and an n-labelled graph (H, ") is the monoidal
product g ® A of the corresponding morphisms.

G, 1)+ (H,I') —

5
")

These operations together are as expressive as the operation of precomposition with a class of vertex-less
morphisms in BGraph. In fact, these operations can construct all morphisms n — 0 where the connection to
the left boundary is a matrix L only formed by the comonoid operations.

The operations for rank width are also derived from compositions and monoidal products in BGraph.
The linear recolouring Recol,, (G, B) of the graph (G, B) with multiple labels by a matrix M corresponds to
precomposing g, the morphism representing (G, B), with the matrix M.

Recoly (G,B) — n ntl B

The bilinear product (G, B) +, p v (H, C) of two graphs (G, B) and (H, C) with multiple labels is the com-
position that connects their corresponding morphisms, g and &, through P and precomposes M and N to
the labels of g and A.

(G’B)+M,P,N(H’C) -

The operations of linear recolouring and bilinear product together define the operation of precomposi-
tion with a vertex-less morphism in BGraph. In fact, these operations can construct all morphisms n — 0 in
BGraph.



Chapter 5

A Monoidal Algebra for Branch Width

Different categorical algebras for graphs determine different composition operations. Compositions in the
category of cospans of hypergraphs join two hypergraphs by identifying some of their vertices. Section 4.1
derived the operations for tree width from compositions and monoidal products in this category. Similarly, in
the category of bialgebra graphs, composing two graphs means connecting them along some dangling edges.
Section 4.3 derived the operations for clique and rank widths from compositions and monoidal products in
this category. What does monoidal width measure in these two cases?

Monoidal width in cospans of hypergraphs is equivalent to tree width. As recalled in Section 2.2, tree
width [RS86] is based on the corresponding notion of tree decomposition, whose underlying compositional
algebra is captured by cospan composition, and measures the structural complexity of graphs. The main
results of this chapter and Chapter 6 validate the use of monoidal width as a measure of structural complexity.

Tree width and branch width are equivalent graph complexity measures. We leverage this fact to show
equivalence between tree width and monoidal width in cospans of hypergraphs. Section 5.1 defines an in-
ductive version of branch decompositions as an intermediate step towards the main result in Section 5.2,
Theorem 5.16.

5.1 Inductive branch decompositions

Similarly to the Courcelle’s graph expressions recalled in Section 2.3 ([BC87, Definition 3.4] and [Cou90,
Definition 2.7]), monoidal decompositions in cospans of hypergraphs are also terms for hypergraphs, but
where the operations are compositions and monoidal product in Cospan(UHGraph),.. This contrasts with
the more combinatorial flavour of branch decompositions and makes translating between these two ap-
proaches technically involved. Following the intuitions behind Courcelle’s proof of equivalence between
tree width and width of graph expressions [Cou92a, Theorem 2.2], we introduce inductive branch decom-
positions as intermediate step between branch and monoidal decompositions. These add to branch de-
compositions the algebraic flavour of monoidal decompositions by relying on the inductive data structure
of binary trees. In the same way that graph expressions define graphs with sources [BC87, Proposition 3.6],
which appeared as rooted hypergraphs in Robertson and Seymour [RS90, Section 3], inductive decompo-
sitions define hypergraphs with sources. These are the unlabelled version of the relational structures with
constants recalled in Definition 2.53. Since tree and branch decompositions of relational structures are tree
and branch decompositions of their underlying hypergraph, we will work with the latter and consider the
category Cospan(UHGraph),, of discrete cospans of hypergraphs instead of the category sStruct, of discrete
cospans of relational structures.

Definition 5.1. A hypergraph with sources is a pair I' = (G, X) of a hypergraph G = (V, E) and a subset

69
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X C V ofits vertices, called the sources. Given two graphs with sourcesT" = (G, X) and I = (G/, X'), we
say that I’ is a subgraph of I whenever G’ is a subgraph of G.

Note that the sources of a subhypergraph I'”” of I need not to appear as sources of I, nor vice versa. In
fact, if I is obtained by identifying all the sources of a hypergraph I'; with some of the sources of another
hypergraph I',, the sources of I" and I'; will be disjoint. A hypergraph with sources I" = (G, X) can be seen
as a morphism g: X — @ in Cospan(UHGraph),: g =: X — G < @ :, where the legs of the cospan are
1t X->Vandi: 0->V.

Example 5.2. Sources are marked vertices in the graph and are thought of as an interface that can be glued
with that of another graph. Two graphs sharing the sources, as illustrated below, can be “glued together”:

[ ] [ ] [ ]
-

[ J
* | glued with 'i gives | :01
[ J [ J [ ] [ J

These two graphs correspond to two morphisms g, g, : 1 — @ in Cospan(UHGraph), that can be composed
to obtain the rightmost graph C; ¢ (g; ® g,).

8 = g2=§ U 5(g1®g)=

Definition 5.3. A binary tree T € T for a hypergraph I is defined inductively.

T :: =) if ledges(I)| < 1
| (T, —T'—T5) if ) € Tr,, T, € Tr, and I';, I, are subgraphs of I

An inductive branch decomposition of a hypergraph with sources I' is a binary tree T' € T satisfying
some conditions such that, identifying the common sources inI"; and I',, we obtain T".

Definition 5.4. An inductive branch decomposition of a hypergraph with sourcesI" = ((V, E), X) is a binary
tree T € 7 where either I has at most one edge and ' = (I'), or T = (T —I'=T,) and T; € Ty, are
inductive branch decompositions of subhypergraphs I'; = ((V;, E;), X;) of I" such that:
e The edges are partitioned intwo, E = E| U E,,and V = V; U Vy;
e The sources are those vertices shared with the original sources as well as those shared with the other
subhypergraph, X; = (V; n V) U (X nV)).

Remark 5.5. Note that ends(E;) C V; and that not all subtrees of a decomposition T are themselves de-
compositions: only those T that contain all the nodes in T that are below the root of T’. We call these full
subtrees, T’ < T, and indicate with A(T”) the subhypergraph of I" that T’ is a decomposition of. We will
sometimes write I'; = A(T;), V; = vertices(I';) and X; = sources(I';). Then,

sources(I';) = (vertices(I';) N vertices(I'y)) U (sources(I") N vertices(I';)) .

At every step in a decomposition, two graphs with sources are composed along the common boundary
identifying some sources of one graph with some sources of the other. The size of the biggest of these
boundaries determines the width of the decomposition.
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Definition 5.6. The width of an inductive branch decomposition T of a hypergraph with sourcesT" = (G, X),
with sources X, is defined inductively:

wd(T):= | X| ifT =),
| max{wd(T}), wd(T,), | X|} ifT =(T,—TI'—-T1,).

Expanding this expression, we obtain

wd(T) = max |sources(A(T"))].
T’ full subtree of T

Equivalence with branch width

Inductive branch width coincides with branch width (Proposition 5.10). We show their equivalence by con-
structing, in Lemma 5.8, a branch decomposition from an inductive one and vice versa, in Lemma 5.9, pre-
serving the width. For defining these mappings, we find an explicit expression for the set of sources of
subgraphs A(T;) corresponding to full subtrees T}, of a decomposition 7.

Lemma 5.7. Let T be an inductive branch decomposition of a hypergraph with sources I and T}, be a full
subtree of T'. Then,

sources(A(Ty)) = vertices(A(Ty)) N | X U U vertices(A(T")) |,
T'%T,

where T' % T, denotes a full subtree T’ of T whose intersection with T, is empty.

Proof. Proceed by induction on the decomposition tree T'. If it is a leaf, T = (I'), then its subtree is also a
leaf, Ty = (I'), and we are done.

If T = (T} —I'—T,), then either Ty is a full subtree of T, or it is a full subtree of T, or it coincides with T'.
If T,y coincides with T, then their sources coincide and the statement holds because sources(A(Tj)) = X =
V n X. Suppose that T} is a full subtree of T}. Then, by applying the induction hypothesis, Remark 5.5, and
using the fact that A(T,)) C A(T}), we compute its sources

sources(A(Ty))

= vertices(A(T)) N | sources(A(T)) U U vertices(A(T"))
T'<T|,T'#Ty

= vertices(A(Ty)) N ((vertices(/l(Tl)) N (vertices(A(T)) U X)) U U vertices(/l(T’)))
T/

= vertices(A(Ty)) N | vertices(A(T,)) U X U U vertices(A(T"))
T'<T,,T'#T,

= vertices(A(Ty)) N| X U U vertices(A(T"))
T'<TT'%T,

A similar computation can be done if T is a full subtree of 7,. 0
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Given an inductive branch decomposition 7', the branch decomposition I7(T) is obtained by forgetting
the labelling of its internal nodes and which node corresponds to the root.

Lemma 5.8. Let T be an inductive branch decomposition of a hypergraph with sourcesI" = (G, X). Then,
there is a branch decomposition I7(T) of its underlying hypergraph G of bounded width: wd(ZI7(T)) <
wd(T).

Proof. A binary tree is, in particular, a subcubic tree. Then, we can define Y to be the unlabelled tree
underlying T. If the label of a leaf / of T is a subhypergraph of I" with one edge ¢;, then we keep the
leaf, otherwise, if the subhypergraph is discrete, we remove the leaf / from Y. Then, there is a bijection
b: leaves(Y) — edges(G) such that b(/):=e;. Then, (Y, b) is a branch decomposition of G and we can
define I7(T):= (Y, b).

By construction, if e € edges(Y) then e € edges(T'). Let {v,w} = ends(e) with v parent of w in T
and let T, the full subtree of T with root w. Let {E,, E,} be the (non-trivial) partition of E induced by
e. Then, for the edges sets, E,, = edges(A(T},)) and E, = UT,%TW edges(A(T")), and, for the vertices sets,
ends(E,,) C vertices(A(T,,)) and ends(E,) C UT,sz vertices(A(T”)). Using these inclusions and applying
Lemma 5.7,

ord(e) wd(Y, b)
= |ends(E,,) Nends(E,)| = max ord(e)
ecedges(Y)

< |vertices(4(T},)) N U vertices(A(T"))| < max |sources(A(T"))|
T'ET, <t

< |vertices(A(T,)) N (X U U vertices(A(T")))| < max |sources(A(T"))]

3T, T'<T
= [sources(A(T},))| = wd(T)

O

Given a branch decomposition (Y, b) of a hypergraph G, we pick an edge of Y and subdivide it to add an
extra vertex which will be the root. The labelling of the internal nodes comes as a consequence and define
an inductive branch decomposition Z(Y, b) of the same width.

Lemma 5.9. Let (Y, b) be a branch decomposition of a hypergraph G and letT" = (G, X) be a hypergraph
with sources X whose underlying hypergraph is G. Then, there is a branch decomposition I(Y ,b) of I" of
bounded width: wd(Z(Y, b)) < wd(Y, b) + | X]|.

Proof. Proceed by induction on |edges(Y)|. If Y has no edges, then either G has no edges and (Y, b) = ()
or G has only one edge ¢; and (Y, b) = (e;). In either case, define Z(Y, b):=(I') and wd(Z(Y, b)):= | X| <
wd(Y,b) + | X|.

If Y has at least one edge e, then Y = Ylin with Y; a subcubic tree. Let E; = b(leaves(Y})) be the sets
of edges of G indicated by the leaves of Y;. Then, E| U E, = E. By induction hypothesis, there are inductive
branch decompositions T} := I(Y;, b;) of I'; = (G;, X;), where V] :=ends(E;), V,:=ends(E,) U (V \ V}),
X;:=(VinV)U(V;nX)and G;:= (V,, E;). Then, the tree I(Y, b):= (I}, —I'—15) is an inductive branch
decomposition of I" and, applying Lemma 5.7,

wd(Z(Y, b))
1= max{wd(T)), | X|, wd(T5)}
= max |sources(A(T"))|

T'<T
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< ;nay} |vertices(A(T”")) N ends(E \ edges(A(T")))| + | X|
<

= max_ord(e) + | X|
ecedges(Y)

=:wd(Y, b) + | X|
O

Combining Lemmas 5.8 and 5.9, we obtain the equivalence between branch width and inductive branch
width.

Proposition 5.10. For hypergraphs with no sources, branch width and inductive branch width coincide.

5.2 Bounding branch width

Monoidal width in cospans of hypergraphs is equivalent to branch width (Theorem 5.16) and, as a conse-
guence, it is also equivalent to tree width (Corollary 5.17). In particular, the monoidal width of a hypergraph
is at most its branch width +1 and at least half of it. Proposition 5.13 shows the upper bound by mapping a
branch decomposition to a monoidal decomposition of the same hypergraph with bounded width. Similarly,
Proposition 5.15 defines a branch decomposition from a monoidal decomposition to show the lower bound.
The instantiation of monoidal width in cospans of hypergraphs needs an appropriate weight function. The
width of a tree decomposition depends on the number of vertices contained in each bag, thus we define the
weight function for Cospan(UHGraph),, to count the number of vertices of the apex graph in each cospan.

Definition 5.11. For a morphism g: X — Y in Cospan(UHGraph),, the weight function w is defined as
w(g):=|V|, where V is the set of vertices of the apexof g,i.e.g=: X > G« Y : andG = (V, E).

With this definition, the identity on X weights | X | and compositions along X cost | X |. This definition
gives a weight function.

Lemma 5.12. The function w in Definition 5.11 satisfies the conditions in Definition 3.3 for a weight function
in the monoidal category Cospan(UHGraph),.

Proof. For f: X - Y,g: Y — Zand f': X' — Y’ with sets of vertices V', W and V', we can bound the
weightsof f 3gand f ® f'.

w(f 3y &) w(f ® f)

=V +y W| =V 4V
SIWVI+IWl+[Y] =V|+ V|
=:w(/f) +w(g) + w(Y) =:w(f) +w(f")

O

A branch decomposition divides a hypergraph into one-edge subhypergraphs. Given a branch decompo-
sition of a hypergraph I" with sources, the corresponding monoidal decomposition is defined by taking all
the one-edge subhypergraphs and composing them according to the tree structure of the branch decompo-
sition. For example, the monoidal decomposition shown below right corresponds to the inductive branch
decomposition of 3-clique at its left: the three edge generators @) are connected following the shape of
the branch decomposition.
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Proposition 5.13. Let T be an inductive branch decomposition of a hypergraph with sourcesT" = (G, X). Let
g:=1: X - G < @ : be the corresponding cospan and let y(G) indicate the hyperedge size of G. Then,
there is a monoidal decomposition B(T) € D, of bounded width: wd(B'(T)) < max{wd(T) + 1,7(G)}.

Proof. Let G = (V, E) and proceed by induction on the decomposition tree T. If the tree T = (I') is
composed of only one leaf, then the label I" of this leaf must have at most one hyperedge with y(G) end-
points and wd(T"):= | X|. We define the corresponding monoidal decomposition to also consist of only a
leaf, B(T'):= (g), and obtain the desired bound wd(B'(T")) = max{| X |, y(G)} = max{wd(T), y(G)}.

If T = (I, —I'—T,), then, by definition of inductive branch decomposition, T is composed of two sub-
trees T and T, that give branch decompositions of I'; = (G, X;) and I'; = (G5, X,). There are three con-
ditions imposed by the definition on these subgraphs G; = (V,, E;): E = E{ U E, with E; # 3, VUV, =V,
and X; = Vi nl)uXnV,). Letg, =1: X; > G; < @ : be the morphism in Cospan(UHGraph),
corresponding to I';. Then, we decompose g in terms of identities, the structure of Cospan(UHGraph),,, and
its subgraphs g, and g,, separating their boundaries into X \ X,, (X; N X))\ X, X;nX,NnX,and X, \ X :

By induction hypothesis, there are monoidal decompositions BT(T,») of the morphisms g; of bounded width:
wd(B'(T;)) < max{wd(T;) + 1,7(G,)}. By Lemma 3.11, there is a monoidal decomposition C(B'(T})) of the
morphism in the above dashed box of bounded width: wd(C(B'(T}))) < max{wd(B'(T})), | X, | + 1}. Using
this decomposition, we can define the monoidal decomposition given by the cuts in the figure above.

B (T):= (CB(T)— & —Ty,\x,)— 5x, =B (T2).

We can bound its width by applying Lemma 3.11, the induction hypothesis and the relevant definitions of
width (| X;| < wd(T;) by Definitions 5.6 and 5.11).

wd(BY(T))

:= max{wd(C(B"(T}))), wd(B" (T})), | X, |}

< max{wd(B' (), wd(B (Ty)). 1 X,] + 1, | X, |}

< max{wd(T}) + 1,7(G), wd(Ty) + 1,7(G,), | X, | + 1, | X, |}
< max{max{wd(T}), wd(T3). | X, |. | X5|} + 1.7(G)). 7(G,)}
< max{max{wd(T)), wd(T»), | X |} + 1,y(G)}

=: max{wd(T) + 1,y(G)}
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The mapping from monoidal decompositions to inductive branch decompositions follows a similar idea
to the previous one and also proceeds by induction on the decomposition tree. It requires some extra bu-
reaucracy to handle the case of composition nodes, for which the following lemma is needed.

Lemma 5.14. Consider a hypergraph with sourcesT" = ((V, E), X), a function ¢ : V' — W and define the
hypergraph with sources ¢(I') := ((¢p(V), E), ¢p(X)). Suppose there is an inductive branch decomposition T
of I'. Then, there is an inductive branch decomposition ¢(T') of ¢(I') of bounded width: wd(¢(T)) < wd(T).

Proof. Proceed by induction onthe decompositiontree T. If T = (I') is just a leaf, then define ¢(T") := (¢(I"))
to be a leaf as well. Its width is bounded by that of T: wd(¢(T)):= |p(X)| < | X| =:wd(T).

Otherwise, T' = (T} —I'—T5) has two subtrees, where T; is an inductive branch decomposition of I'; =
((V;, E;), X;). By the definition of inductive branch decomposition (Definition 5.4), E = E|UE,, V = VUV,
and X; = (V; nV,) U (X nV;). Denote with ¢, : V|, - W and ¢, : V, - W the compositions of ¢ with
theinclusionsi; : V; < V and i, : V¥, < V. By induction hypothesis, there are inductive branch decompo-
sitions ¢;(T;) of ¢,(T",) of bounded width, wd(e,(T})) < wd(T)). Define ¢(T):= (¢, (T))— ) —b,(Ty)) by
combining the inductive branch decompositions of ¢,(I";) and ¢,(I";). This is an inductive branch decom-
position of ¢(I') because E = E| U E,, ¢(V) = ¢p(V] U V,) = d(;(V)) U ,(V,)) = ¢1(V)) U ¢ (V,), and
$i(X)) = p((Vi N V) UX N V) = ¢(V N Va) U X N 1)) = (6(V) N (V) U (h(X) N (V7). The width
of ¢(T') is bounded by that of T:

wd(o(T))

1= max{wd(¢,(T})), wd(¢,(T3)), |p(X)| }
< max{wd(T}), wd(T3), | X | }

=:wd(T)

O

Proposition 5.15. Let d € D, be a monoidal decomposition of a morphismg =1: X - G < Y :rin
Cospan(UHGraph),.. Consider the hypergraph with sources I':= (G, (X) U r(Y)) corresponding to g. Then,
there is an inductive branch decomposition B(d) of I of bounded width: wd(B(d)) < 2-max{wd(d), | X|, |Y|}.

Proof. Proceed by induction on d. If d = (g) is just a leaf, then define B3(d) to be any inductive branch
decomposition of I". The width of an inductive branch decomposition of I'" is bounded by the number of
vertices of " and, as a consequence, by the width of d: wd(B(d)) < |V | =:wd(d) < 2-max{wd(d), | X|,|Y|}.

Suppose that d = (d|— §c —d,) starts with a composition node. Then, g = g; § g, for two morphisms
g=L:X->G «<C:rjandg, =01,: C—> G, <Y :ry.

Vi Va
I
I
X c Y
By induction hypothesis, there are inductive branch decompositions B(d;) and B(d,) of the hypergraphs
with sources I'; := (G4, 11(X) U r;(C)) and I'; := (G5, [,(C) U r,(Y)) of bounded width: wd(B(d;)) < 2 -
max{wd(d,), | X|,|C|} and wd(B(d,)) < 2 - max{wd(d,), |Y|,|C|}. We apply Lemma 5.14 to the decompo-
sitions BB(d;) and functions j; to obtain inductive branch decompositions j;(53(d;)) of j;(I";) bounded width:
wd(j;(B(d;))) < wd(B(d;)). These two decompositions combine into an inductive branch decomposition
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B(d):= (j;(B(d,))—T'—j,(B(d,))). This is, indeed, an inductive branch decomposition of I" because it sat-
isfies the condition on the edges and vertices, E = E; L E, and V' = j;(V}) U j,(V,), and the conditions on
the sources,

JX)ur(C)) J2o(L(C)Ury(Y))

= j1(L(X) U j; (1 (C)) = jo(I(C)) U jp(ry(Y))

=1(X)Uq(C) =q(C)ur(Y)

=1X) U (V) N jp (V) = (1D Nj, () ur(Y)

= (X)) urX)nji (V) U 1Y) N jr (V) = (UX)ur(Y) N j,() U (i (V) N jr (V)

in Definition 5.4. The width of B(d) is bounded.

wd(B(d))

= max{wd(j;(B(d)))), [I(X) U r(Y)], wd(j,(B(d,)))}

< max{wd(B(d))), [[(X)| + |[r(Y)], wd(B(d,))}

< max{2wd(d), 2| X|,2|C|, | X| + |Y|, wd(d,), 2|C],2|Y |}
<2-max{wd(d,), |C|, wd(d,), | X|,|Y|}

=:2 -max{wd(d), | X|, Y|}

Suppose that d = (d;— ® —d,) starts with a monoidal product node. Then, g = g; ® g, for two mor-
phismsg; =/;: X; - G, «< Y| :rjand g, = Il,: X, - G, < Y, :ry. Byinduction hypothesis, there
are inductive branch decompositions 3(d;) and 3(d,) of the hypergraphs with sources I'} := (G, [{(X) U
r1(Y})) and I'; := (G5, [,(X,) U ry(Y;)) of bounded width: wd(3(d;)) < 2 - max{wd(d,), |X;l,|Y;]} and
wd(B(d,)) < 2 - max{wd(d,), | X;|, |Y3|}. These decompositions combine into an inductive branch decom-
position B(d) := (B(d,)—I'—1B(d,)). This is, indeed, a decomposition of I" because it satisfies the conditions
of Definition 5.4: E = E{UE,,V =V, UV, and [;(X;) Ur,(Y}) = (U(X)Uur(Y))n V) U (V] nV,). The width
of B(d) is bounded.

wd(B(d))

< max{wd(B(d))), [[(X) U r(Y)|, wd(B(d,))}

< max{2wd(d), 2| X, |, 21Y |, | X| + |Y |, wd(d), 2| X, |, 2| Y5 |}
<2 -max{wd(d,),wd(d,), | X|,|Y|}

=:2 - max{wd(d), | X|, Y|}

Theorem 5.16 summarises Propositions 5.10, 5.13 and 5.15.

Theorem 5.16. Let Gbeagraphandg =: § — G « §§ : be the corresponding morphism of Cospan(UHGraph),.
Then, 3 - bwd(G) < mwd(g) < bwd(G) + 1.

With this result and Theorem 2.30, we obtain equivalence with tree width.

Corollary 5.17. Tree width is equivalent to monoidal width in Cospan(UHGraph).,.



Chapter 6

A Monoidal Algebra for Rank Width

Chapter 5 showed that composition in cospans of hypergraphs captures the operation that underlies tree
decompositions. As a consequence, monoidal width in Cospan(UHGraph),, is equivalent to tree width. This
chapter concerns rank width. As anticipated in Section 4.3, the operations for clique and rank widths derive
from the categorical algebra of the prop BGraph. Here, we show that the prop BGraph captures the algebra
of composition underlying rank width, making monoidal width in this category equivalent to rank width and,
as a consequence, to clique width.

Rank width relies on the corresponding notion of rank decomposition, which we recalled in Section 2.2.
Clique width and rank width are equivalent graph complexity measures. We leverage this fact to show equiv-
alence between clique width and monoidal width in the category of bialgebra graphs. As an intermediate
step towards the main result of this chapter, Theorem 6.19 in Section 6.2, we introduce inductive rank de-
compositions in Section 6.1.

6.1 Inductive rank decompositions

As for branch decompositions, inductive rank decompositions are an intermediate step to add the inductive
flavour of monoidal decompositions to rank decompositions. Inductive rank decompositions are binary trees
and give expressions that define graphs whose interfaces are some marked “dangling edges”.

Definition 6.1. A graph with dangling edges is a pair I' = ([G], B) of an adjacency matrix G € Maty(k, k)
that records the connectivity of the graph and a matrix B € Maty(k, n) that records the dangling edges
connected to n boundary ports. Two graphs with dangling edges T" = ([G], B) andT” = ([G’] , B") are equal
if they encode the same graph with a different ordering on the vertices, i.e. there is a permutation matrix
P € Maty(k,k)suchthat G=P-G'- PTand B=P - B'.

We will sometimes write G € adjacency(I') and B = sources(I').
A graph with dangling edges I = ([G], B) can be seen as a morphism n — 0 in BGraph.

77
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Example 6.2. Two graphs with the same ports, as illustrated below, can be “glued” together:

T RNEN

These two graphs correspond to two morphisms g, g, : 2 — 0in BGraph that can be composed to obtain
the rightmost graph G, 5 (g1 ® g5).

g = & = Uy 5(g1 ®gr) =

An inductive rank decomposition of I" is a binary tree satisfying some conditions that ensure that com-
posing the dangling edges of I'; with those of I', givesT.

Definition 6.3. A binary tree T € T for a graph I is defined inductively.

T ::=D) if |vertices(I')| < 1
| (T\—I'—T)) if Ty € Tr,, T, € Tr, and I';, T, are subgraphs of I'
Definition 6.4. An inductive rank decomposition of a graph with dangling edgesI" = ([G], B) is a binary tree
T € Tt where either: I" has at most one vertexand T = (I'); or T = (T} —I'—T,) and T; € T, are inductive
rank decompositions of subgraphsI'; = ([Gi] , B;) of I such that: '
e The vertices are partitioned in two, [G] = [( G@‘ GCZ )],
e The dangling edges are those to the original boundary and to the other subgraph, B, = (A; | C) and

B, = (A, | CT), where B = (2; )

We will sometimes write I'; = A(T;), G; = adjacency(I’;) and B; = sources(I’;).

Remark 6.5. Thanks to the equivalence relation on graphs with dangling edges, we can always assume that
the rows of G and B are ordered like the leaves of T' so that we can split B horizontally to get A; and A,.

At every step in a decomposition, two graphs with dangling edges are composed along a common bound-
ary. The most complex of these boundaries determines the width of the decomposition.

Definition 6.6. The width of an inductive rank decomposition T of a graph with danglingedgesI" = ([G], B),
with boundary matrix B, is defined inductively:

wd(T):= rk(B) ifT =),
| max{wd(T}), wd(T,), rk(B)} ifT =T —TI'—T,).

Expanding this expression, we obtain

wd(T) = max rk(sources(A(T"))).
T’ full subtree of T
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Equivalence with rank width

Rank width coincides with inductive rank width as inductive rank decompositions can be transformed into
rank decompositions while preserving their width (Lemma 6.8), and vice versa (Lemma 6.9). The width of
an inductive rank decomposition of a graph I" is defined inductively. The next lemma, which is needed for
proving Lemma 6.8, shows that it can be computed “globally” by relating the boundaries and adjacency
matrices of the subgraphs of I' in the decomposition to the boundary and adjacency matrices of T'.

Lemma 6.7. Let T be an inductive rank decomposition of a graph with dangling edgesT" = ([G], B). Consider
a full subtree T' of T that identifies the subgraph T := A(T") = ([G’] , B"). Then, the adjacency matrix of T

G, C, C AL
can be written as [G] = ( 0 G Cyg > , its boundary as B = ( Al
0 0 Gy AR

boundary of T": rk(B') = rk(A’ | CZ | CR)-

> and we can compute the rank of the

Proof. Proceed by induction on the decomposition tree T'. If it is just a leaf, T = (I'), then I" has at most one
vertex, and IV = @ or I” =T. In both cases, the desired equality is true.
If T = (T,—I'—T,), then, by Definition 6.4, we can write the adjacency and boundary matrices of I in

terms of those of I, := A(T}) = ([Gy], B)) and Ty := A(Ty) = ([G,] , By): [G] = [(G@l s )] B = <j}; )

B, = (A, | C)and B, = (A, | CT). Suppose that T’ is a full subtree of T}. Then, we can write [Gl] =
G, c; D Ay E; A, Ep

[( 0 G DR>], A = <A’> and C = <E’>. It follows that B, = (A’ E’> and Cgr = (Dg | E").
0 0 Hg Fr Eg Fr Eg

By induction hypothesis, rk(B’) = rk(A’ | E' | CZ | Dg). The rank is invariant to permuting the order of

columns, thus rk(B’") = rk(A’ | C-L'- | Dg | E') = rk(A" | C]-_'- | CRr). We proceed analogously if 77 is a full

subtree of T,. O

An inductive rank decomposition defines a rank decomposition by forgetting the labelling of the internal
nodes and by forgetting the root node.

Lemma 6.8. Let T be an inductive rank decomposition of a graph with dangling edges I'. Then, there is a
rank decomposition I7(T') of G of bounded width: wd(I7(T")) < wd(T).

Proof. Abinary treeis, in particular, a subcubic tree. Then, we define the rank decomposition corresponding
to an inductive rank decomposition T by its underlying unlabelled tree Y from which we remove the leaves
of T with empty label. The corresponding bijection r : leaves(Y) — vertices(G) between the leaves of Y
and the vertices of G is defined by the labels of the leaves in T': if [ is aleaf in Y, then it is a leaf in T with a
non-empty label: the subgraph I'; of I" with one vertex v,. These subgraphs need to give I when composed
together, then, the function r is a bijection with r(/):= v,. Thus, (Y, r) is a branch decomposition of G and
we can define I7(T):= (Y, r).

By construction, the edges of Y are edges of T so we can compute the order of the edges in Y from the
labellings of the nodes in T'. Consider an edge b in Y and consider its endpoints in T: let {v, v,} = ends(b)
with v parent of v, in T. The order of b is related to the rank of the boundary of the subtree T}, of T with
rootinv,. Let A(T) =T = ([Gb] , By) be the subgraph of I" identified by T},. We can express the adjacency
and boundary matrices of I" in terms of those of I';:

G, C, C Ap
[G]:[(O GbCR>] and B=<A’>.
0 0 Gg AR

By Lemma 6.7, the boundary rank of I'; can be computed by rk(B,) = rk(A’ | CZ | Cr). By Definition 2.42,
the order of the edge b is ord(b) := rk(CZ | Cr), and we can bound it with the boundary rank of I': rk(B,) >
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ord(b). These observations allow us to bound the width of the rank decomposition Y.

wd(Y, r)

= max ord(b)
beedges(Y)

< max rk(By)
beedges(Y)

< max rk(sources(A(T")))
T'<T
=:wd(T)
O

An inductive rank decomposition is almost the same as a rank decomposition but with a selected node,
the root, that points to the first step in the decomposition. We assign a root to a rank decomposition by pick-
ing an edge in the decomposition tree and subdividing it. The extra vertex added in this operation becomes
the root and determines the labelling of the internal nodes by proceeding bottom up from the leaves.

Lemma 6.9. LetI" = ([G], B) be a graph with dangling edges and (Y , r) be a rank decomposition of G. Then,
there is an inductive rank decomposition I(Y ,r) of I' of bounded width: wd(Z(Y, r)) < wd(Y, r) + rk(B).

Proof. Proceed by induction on the number of edges of the decomposition tree Y to construct an inductive
decomposition tree T in which every non-trivial full subtree T’ has a corresponding edge b’ in the tree Y.

Suppose Y has no edges, then either G = @ or G has one vertex. In either case, we define an inductive
rank decomposition with just a leaf labelled with T, Z(Y,r):= (I'). We compute its width by definition:
wd(Z(Y,r)):=rk(B) < wd(Y,r) + rk(B).

If the decomposition tree has at least an edge, then it is composed of two subcubic subtrees, Y =Y, iYZ.
Let V; := r(leaves(Y;)) be the set of vertices associated to Y; and G; := G[V;] be the subgraph of G induced by
the set of vertices V;. By induction hypothesis, there are inductive rank decompositions T; of I'; = ([G,-] ,B;)
in which every full subtree T’ has an associated edge ’. Associate the edge b to both T} and T, so that
every subtree of T has an associated edge in Y. We can use these decompositions to define an inductive
rank decomposition T = (T}, —I'—T,) of I'. Let T’ be a full subtree of T corresponding to I'" = ([G’] ,B).
By Lemma 6.7, we can compute the rank of its boundary matrix rk(B’) = rk(A’ | CIT | Cg), where A/,
C; and Cy are as in the statement of Lemma 6.7. The matrix A’ contains some of the rows of B, then its
rank is bounded by the rank of B and we obtain rk(B') < rk(B) + rk(C] | Cg). The matrix (C] | Cp)
records the edges between the vertices in G’ and the vertices in the rest of G, which, by Definition 2.42,
are the edges that determine ord(d’). This means that the rank of this matrix is the order of the edge »’:
rk(CZ | Cg) = ord(b). With these observations, we can compute the width of T..

wd(T)
= max rk(B")
T/<T

= kA'|cT|cC
ITr,lg;r( |C, | CR)
< max rk(C; | Cg) + rk(B)
T'<T

= max _ord(b) + rk(B)
beedges(Y)

:wd(Y,r) + rk(B)
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By combining Lemmas 6.8 and 6.9 we obtain that rank decompositions and inductive ones give the same
complexity measure.

Proposition 6.10. For graphs with no dangling edges, rank width and inductive rank width coincide.

6.2 Bounding rank width

Monoidal width in the prop BGraph of graphs is equivalent to rank width: it is at most twice and at least a
half of rank width. Transforming an inductive rank decomposition into a monoidal decomposition gives the
upper bound, while a mapping in the other direction yields the lower bound. As for cospans of graphs, the
number of vertices in a graph gives its cost, so an appropriate weight function counts the number of vertices
in each morphism.

Definition 6.11. For a morphism g : n — m in MGraph, the weight function w is defined as w(g) := rk(G) +
rk(L) + rk(R) + rk(P) + rk(F), where g = ([G], L, R, P,[F)).

With this definition, the identity on n weights n because rk(1,) = n, and composing along n wires costs
n. This defines a weight function.

Lemma 6.12. The function w in Definition 6.11 satisfies the conditions for a weight function in Definition 3.3
in the monoidal category MGraph.

Proof. For morphismsg: n— m,h: m— landg': ' — m’, in MGraph, given by g = ((G], L, R, P, [F)),
h = (H],M,S,Q,[E])and g’ = ([G'] .L',R’, P',[F']), we recall the expressions for the composition
g $ h and the monoidal product g ® g’.
o e G RMT L ROT T
g3h:= ([( 0 H+MFMT >] K (MP)’ (S+M(F+FT)QT >’QP’ [E+QFQ ])
¢®¢=([GoG|.L&L . ROR.POHP.[FOF])

We bound the ranks of these matrices individually.

rk(% H+1§\f1wFTMT ) S rk(G) +rk(H) +m rk(G @ G') < rk(G) + rk(G")
rk( arp) < k(L) + rk(M) rk(L @ L') < rk(L) + rk(L")

rk( S+ M(’;Q;FT)QT ) < rk(R) + rk(S) + rk(Q) rk(R @ R’) < rk(R) + rk(R)
rk(QP) < rk(P) k(P ® P') < rk(P) + rk(P")

rk(E + QF Q") < rk(F) + rk(E) k(F & F') < rk(F) + rk(F")

With these inequalities, we bound the weights of compositions and monoidal products.

w(g 5, h) < w(g)+w(h)+m wig®g') < w(g)+w(g)
O

Given the inductive nature of both kinds of decompositions, the monoidal decomposition corresponding
to an inductive rank decomposition is constructed by induction. The inductive step relies on the factorisation
of morphisms n — 0 as shown in Figure 6.1.

In order to show that such factorisation is always possible, Lemma 6.14 shows that any boundary matrix
can be split along the ranks | and r,.
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Figure 6.1: Splitting a graph with dangling edges optimally into subgraphs.

Remark 6.13. By Lemma 3.16, the rank of a composition of two matrices is bounded by their ranks: rk(A-B) <
min{rk(A), rk(B)}. If, moreover, B has full rank, then rk(A - B) = rk(A).

Lemma 6.14. Let A; € Maty(k;,n), fori = 1,2, and C € Maty(k,, k,). Then, there are rank decompositions
of (A, | C)and (A, | CT) of the form

* (A |C)=1L;-(N;|S-Lj) and

* (A |CT)=Ly- (N, | ST-L]).
This ensures that we can decompose the diagram below on the left-hand-side as the one on the right-hand-
side, where r; = rk(A, | C) and r, = rk(A, | CT).

Proof. Letr; =rk(A, | C)and r, = rk(A, | CT). We start by factoring (A, | C)into L, - (N, | K),

O kl = O kl

where L; € Maty(k,,r;), N; € Maty(r;,n) and K; € Maty(r;,k,). Then, we proceed with factoring
(A, | KI") and we show that rk(4, | K;r) = rk(4, | CT). Let L, - (N, | K,) be a rank factorisation of

'l
(Alel)’
O— ky = S ky
: :

with L, € Maty(k,, '), N, € Maty(r',n) and K, € Maty(r',k;). We show that ¥/ = r,. By the first
factorisation, we obtain that C = L, - K, and

(Az|CT>=<A2IKI-LI>=<A2|K1T>'(3L®I>-
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10 .
Then, ' = r, because L, and, consequently, ( 0LT ) have full rank and we can apply Remark 6.13. By letting
1

S = KZT, we obtain the desired factorisation. O

Once the graph in Figure 6.1 has been split, the boundaries of its induced subgraphs have changed. This
means that we cannot apply the inductive hypothesis right away, but we need to first transform the inductive
rank decompositions of the old subgraphs into decompositions of the new ones, as shown in Lemma 6.15.
More explicitly, when M has full rank, if there is an inductive rank decomposition of I' = ([G], B’ - M), which
corresponds to g below left, we can obtain one of I' = ([G], B"), which corresponds to g’ below right, of
the same width.

Lemma 6.15. Let T be an inductive rank decomposition of I' = ([G], B- M), with M that has full rank. Then,
there is an inductive rank decomposition T' of I" = ([G], B - M) such that wd(T') < wd(T") and such that
T and T’ have the same underlying tree structure. If, moreover, M’ has full rank, then wd(T) = wd(T").

Proof. Proceed by induction on the decomposition tree T'. If the tree T is just a leaf with label I", then we
define the corresponding tree to be just a leaf with label I'’: T’ := (I""). Clearly, T and T’ have the same
underlying tree structure. By Remark 6.13 and the fact that M has full rank, we can relate their widths:
wd(T"):=rk(B - M") < rk(B) = rk(B - M) =:wd(T). If, moreover, M’ has full rank, the inequality becomes
an equality and wd(T") = wd(T).

If T = (T),—I'—T,), then the adjacency and boundary matrices of I" can be expressed in terms of those
of its subgraphs I'; := 4,(T}) = ([Gi] , D;), by definition of inductive rank decomposition: G = (G@' GCZ ),
B-M = <3; ) -M = (ﬁ;% ),With D, =(A;-M | C)and D, = (A,- M | C"). The boundary matrices D,
of the subgraphsI’; can also be expressed as a composition with a full-rank matrix: D; = (4;-M | C) = (4 |
C0)- < M uqzz ) and D, = (A,-M | CT) = (A, | CT)- ( M 1]21 ) The matrices (40? 1]2_ ) have full rank because
all their blocks do. Let B, = (A, | C) and B, = (A, | CT). By induction hypothesis, there are inductive rank

. M 0 M 0 .
decompositions 7/ and T, of I', = ([G,] , B, - < 0 1, )) and T, = ([G,], B, - ( 0 1, )) with the same

underlying tree structure as T| and T,, respectively. Moreover, their width is bounded, wd(Tl.’) < wd(T)),
and if, additionally, M’ has full rank, wd(Ti’) = wd(T};). Then, we can use these decompositions to define
an inductive rank decomposition T’ := (TI’—F’—TZ’) of I'" because its adjacency and boundary matrices can

be expressed in terms of those of F:' as in the definition of inductive rank decomposition: G = (%‘ gz ),
B, - (%, “sz ) =(A;-M'|C)and B, - (%/ ﬂgl > = (A, - M’ | CT). Applying the induction hypothesis and
Remark 6.13, we compute the width of this decomposition.

wd(T")

:= max({rk(B - M"), wd(T}), wd(T})}

< max{rk(B), wd(T}), wd(T,)}

= max{rk(B - M), wd(T;), wd(T5)}

=:wd(T)

If, moreover, M’ has full rank, the inequality becomes an equality and wd(T") = wd(T). L]
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With the above results, we construct a monoidal decomposition from an inductive rank decomposition
and show the upper bound on monoidal width.

Proposition 6.16. LetI" = ([G], B) be a graph with dangling edgesand g : n — 0 be the morphism in BGraph
corresponding to I'. Let T be a inductive rank decomposition of I'. Then, there is a monoidal decomposition
RY(T) of g of bounded width wd(R(T)) < 2 - wd(T).

Proof. Proceed by induction on the decomposition tree T'. If the decomposition tree consists of just one
leaf with label T, then I” must have at most one vertex, we can define R(T):= (g) to also be just a leaf, and
bound its width wd(T):= rk(G) = wd(R(T)).

IfT = (T, —I'—T,), then we canrelate the adjacency and boundary matrices of I"to those of I'; := A(T}) =
(|G;] . By, by definition of inductive rank decomposition: G = (%‘ GCZ ) B = <2; ) B, = (A, | C)and
B, = (A, | CT). By Lemma 6.14, there are rank decompositions of (4, | C) and (A, | CT) of the form:
(Aj | C)=L;-(Ny | S-Lj)and(Ay | CT) =L, - (N, | ST - L]). This means that we can write g as
in Figure 6.1, with r; = rk(B;). Then, B; = L; - M; with M, that has full rank r;. By Lemma 6.15, there is an
inductive rank decomposition Ti’ of I“l’. = ([G,-] , L;), with the same underlying binary tree as T}, such that
wd(T;) = wd(T}). Let g; : r; = 0 be the morphisms in BGraph corresponding to I/ and let b: n — r| +r,
be defined as

By induction hypothesis, there are monoidal decompositions RT(TI.’) of the morphisms g; of bounded width:
wd(RT(T))) <2-wd(T)) =2 - wd(T}). Then, g = b 5 4r, (81 ® &) and RI(T):= (b— $r 4y —RN(T)—®
—R*(Tz’))) is a monoidal decomposition of g. Its width can be computed.

wd(R'(T))

:= max{w(b), W(r; +r,), wd(R(T)), wd(R"(T})))}
< max{w(b), w(r| +rp),2 - wd(T}),2 - wd(T,)}

= max{w(b),r; +ry,2 - wd(T}),2 - wd(T3)}

< 2-max{ry, ry, wd(Ty), wd(T5)}

=:2-wd(T)

O

Each node in a monoidal decomposition of a graph g determines a cut in g. This correspondence maps
monoidal decompositions to inductive rank decompositions. However, bounding their widths requires some
care because the splitting determined by a monoidal decomposition may be not the canonical one needed
to define an inductive rank decomposition of the same graph. Lemma 6.7 shows that this does not matter as,
from the induced inductive rank decompositions, we can construct ones of the correct subgraphs by adding
some connections between the vertices as long as the complexity of these connections is bounded by the
boundary.

Given an inductive rank decomposition of I' = ([G], (L | R)), associated to g below left, we construct
oneof I":=([G+L-F-LT|,(L|R+L-(F+FT")-PT)),which corresponds to f 3 g below right, of at
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most the same width.

Lemma 6.17. Let T be an inductive rank decomposition of I' = ([G],(L | R)), with G € Maty(k, k),
L € Maty(k, j) and R € Maty(k,m). Let F € Maty(j,j), P € Maty(m, j) and define the graph I’ by
precomposing with the adjacency matrix [F],T":=([G+ L-F-LT| ,(L | R+ L-(F + F")- PT)). Then,
there is an inductive rank decomposition T’ of "' such that wd(T") < wd(T).

Proof. Note that we can factor the boundary matrixof " as(L | R+ L-(F+ F")-P") = (L | R) -

( b Pt ) Then, we can bound its rank, rk(L | R+ L - (F + FT)- PT) < k(L | R).

Proceed by induction on the decomposition tree T'.

If it is just a leaf with label T, then I" has one vertex and we can define a decomposition for I' to be also
just aleaf: T’ := (I'""). We can bound its width with the width of T: wd(T”):=rk(L | R+ L-(F+FT)-PT) <
rk(L | R) =:wd(T).

If T = (T, —I'—T5), then there are two subgraphs ', = (|G| ,(L; | R, | C))andT, = ([G,] (L, | R, |
C)) such that T; is an inductive rank decomposition of I';, and we can relate the adjacency and boundary

matrices of I to those of I'; and I';, by definition of inductive rank decomposition: [G] = [( G®' Gcz )] and

(L| R = ( g 1’2 ) Similarly, we express the adjacency and boundary matrices of I’ in terms of the same

G\+L,-F-LT C+L,-(F+FT)-L]

. R I g N [ 1 1 2
components: [G+ L-F-LT| [( 0 Go+LyFoL]

<L1 Ry+L,-(F+FT)-PT

Ly Ry+L,-(F+FT)-PT

hypothesis to them.

)] and(L| R+L-(F+F")-PT) =

). We use these decompositions to define two subgraphs of I’ and apply the induction

=G +L-F-L|.(Li |Ry+L;-(F+F")-PT|C+L,-(F+F")-L}))
=(|Gy+ L, - F-L{|,(Ly |(R{ |O)+ L - (F+F")-(P" | L,)))
and
I =(Gy+ Ly F-L)|.(Ly | Ry+ Ly (F+F")-PT|CT+ Ly-(F+F")-L]))
=([Gy+ Ly F-Ly| (L, | (Ry | CT) + Ly - (F+ F") - (PT | L))

(N

By induction, we have inductive rank decompositions T/ of I'/ such that wd(T") < wd(T}). We defined I'] so
that T’ := (T —TI""—T)) would be an inductive rank decomposition of I"". We can bound its width as desired.

wd(T")
:= max{wd(T}), wd(T;),rk(L | R+ L-(F + FT)- PT)}
< max{wd(T}),wd(T,),rk(L | R+ L-(F + F")- PT)}

< max{wd(T}), wd(T3),rk(L | R)}
=:wd(T)
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O

A monoidal decomposition defines by induction an inductive rank decomposition. The inductive step
relies on Lemma 6.15 and Lemma 6.7 to obtain, from an inductive rank decomposition of a graph g, one of
a graph constructed from g by adding additional connections to the boundary or between the vertices in a
controlled manner.

Proposition 6.18. Letd € D, be a monoidal decomposition of a morphism g : n — minBGraph given by g =
([G],L,R, P,[F]),and letT" = ([G], (L | R)) be its corresponding graph with dangling edges. Then, there
exist an inductive rank decomposition R(d) of I" of bounded width: wd(R(d)) < 2-max{wd(d), rk(L), rk(R)}.

Proof. Proceed by induction on the decomposition tree d. If it is just a leaf with label g, then its width is
defined to be the number k of vertices of g, wd(d) := k. Pick any inductive rank decomposition of I" and
define R(d):=T. Surely, wd(T') < k =:wd(d)

If d = (d;— §; —d,) starts with a composition node, then g is the composition of two morphisms:
g = g38 withg; = (|G;| . L;, R, P, | F}] ). Given the partition of the vertices determined by g; and g,, we
can decompose g in another way, by writing [G] = [( %1 EC )] andB=(L|R) = <%1 1_1:1 ) Then, we have

2 2 12

thatG, =Gy, Ly =L|,P=P,-P,C=Ry-L], Ry =R-P], Ly =L, P, Ry = Ry+ Ly-(F; +F)-P],
G, =G,+ L, - F- L;, and F =F+P-F|- PZT. This corresponds to the following diagrammatic rewriting
using the equations of BGraph.

We define El = (Zl | ﬁl | C)and Ez = (Zz | Ez | CT). In order to build an inductive rank decomposition
of I', we need rank decompositions of Fi = ([Ei] ,Ei). We obtain these in three steps. Firstly, we apply

induction to obtain inductive rank decompositions R(d;) of I'; = ([Gi] ,(L; | R)) such that wd(R(d,)) <
2 - max{wd(d,), rk(L;), rk(R;)}. Secondly, we apply Lemma 6.17 to obtain an inductive rank decomposition
T)of I, = ([Gy+ Ly - Fy - Ly | ,(Ly | Ry+ Ly - (Fy + F[) - P,)) such that wd(T})) < wd(R(d,)). Lastly, we
observe that (R, | C) = R, -(P2T | L;) and (L, | CT) =L, - (P, | RIT). Then we obtain that B, = (L, |

1, 0 0 — TN Ty (PP O RT
Rl)-< o B L;)and By = (L, | Ry+Ly-(F{+F)-P] ).( oo

inductive rank decompositions T; of I_“i such that wd(T}) < wd(R(d,)) and wd(T3) < wd(Tz’) < wd(R(d,)).

), and we can apply Lemma 6.15 to get
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If ky,k, > 0, then we define R(d):= (T;—I'—T,), which is an inductive rank decomposition of I" because
[; satisfy the conditions in Definition 6.4. If k; = 0, then T’ = T, and we can define R(d):= T,. Similarly,
ifky =0, thenT = I_“1 and we can define R(d):=Tj. In any case, we can compute the width of R(d) (if
k; = O0then T; = () and wd(T;) = 0) using the inductive hypothesis, Lemma 6.17, Lemma 6.15, the fact that
rk(L) > rk(Ly), rk(R) > rk(R,) and j > rk(R;),rk(L,) because R, : j — k;and L, : j — k,.

wd(T)

:= max{wd(T}), wd(T}), k(L | R)}

< max{wd(R(d))), Wd(Tzl), rk(L | R)}

< max{wd(R(d,)), wd(R(d,)), rk(L | R)}

< max{wd(R(d;)), wd(R(d;)), rk(L) + rk(R)}

<max{2-wd(dy),2-rk(L),2 - rk(Ry),2 - wd(d,),2 - rk(L,),2 - rk(R,), rk(L) + rk(R)}
< 2 -max{wd(d;), rk(L), rk(Ry), wd(d,), rk(L,), rk(R,), rk(L), rk(R)}

<2 -max{wd(d,), wd(d,), j, rk(L), rk(R)}

=:2 - max{wd(d), rk(L), rk(R)}

If d = (d;— ® —d,) starts with monoidal product node, then g is the monoidal product of two mor-

phisms: g = g ® g, with g; = ([G;]. L;, R, P, [F}]) : n; > m;. By exicitly computing the monoidal
. G, 0 L, 0 R 0 PO F 0
product, we obtain that [G] = [( o Gz)]'L = ( P Lz),R = < 0 Rz)’P = ( 0 p2>andF = ( 0 Fz)‘
By induction, we have inductive rank decompositions R(d;) of I';:= ([Gi] ,B;), where B; = (L; | R)), of
bounded width: wd(R(d,)) < 2 - max{wd(d,), rk(L,),rk(R,)}. Let B,:= (L, | 0, | R |0, |0)=
1,,0 0 00 - 01,,0 00

B, - ( 001, @@) and By:= (0, | Ly |0, | Ry | Oy) = B, - (0 001, @>. By Lemma 6.15, we can
obtain inductive rank decompositions T; of l:i = ([Gi] ,Ei) such that wd(T};) < wd(R(d,)). If ky,ky > 0,
then we define R(d) := (I}, —I'—T5), which is an inductive rank decomposition of I" because I_“i satisfy the
conditions in Definition 6.4. If k; = 0, then " = I, and we can define R(d):= T,. Similarly, if k, = 0, then
' =T, and we can define R(d):= T;. In any case, we can compute the width of R(d) (if k; = 0then T; = ()
and wd(T;) = 0) using the inductive hypothesis and Lemma 6.15.

wd(T)
1= max{wd(T}), wd(T»), rk(L | R)}
< max{wd(R(d})), wd(R(d,)), rk(L | R)}
< max{wd(R(d;)), wd(R(d;)), rk(L) + rk(R)}
<max{2-wd(d),2 - rk(L),2 - rk(Ry),2 - wd(d,),2 - rk(L,),2 - rk(R,), rk(L) + rk(R)}
<2 -max{wd(dy), rk(Ly), rk(R;), wd(d,), rk(L,), rk(R,), rk(L), rk(R)}
<2 -max{wd(d,), wd(d,), rk(L), rk(R)}
=:2 - max{wd(d), rk(L), rk(R)}

Propositions 6.10, 6.16 and 6.18 combine to the equivalence of monoidal width and rank width.

Theorem 6.19. Let G be a graph and let g = ([G],i.i,(),[()]) be the corresponding morphism in BGraph.
Then, % -rwd(G) < mwd(g) <2 - rwd(G).
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With this result and Theorem 2.39, we obtain equivalence with clique width.

Corollary 6.20. Clique width is equivalent to monoidal width in BGraph.



Chapter 7

A Monoidal Courcelle-Makowsky Theorem

This chapter unifies the results of previous chapters to obtain a general strategy for proving fixed-parameter
tractability for problems on monoidal categories. We aim to bring the technique exposed in Section 2.3 for
checking formulae on relational structures to the categorical setting. As outlined in Section 2.3, the fixed-
parameter tractability result for relational structures relies on the two fundamental steps below.

1. Identifying generators and operations to express relational structures and graphs. The operations have

a cost that determines the width of structures.

2. Showing a preservation theorem. In fact, the preservation theorems recalled in Section 2.3 are composed
of a structural and a computational part.

(a) Showing that partial solutions can be combined into solutions for compound structures.

(b) Showing that combining partial solutions takes time that is constant in the size of the compound

structure but depends on its width.
Classical examples of this procedure are Courcelle’s theorems for tree width [Cou90] and clique width [CO00],
which we recalled in Sections 2.2 and 2.3.

Chapter 3 gives the first step of this procedure for monoidal categories. Depending on the choice of
operations and their cost, algebraic decompositions of relational structures give their algebraic width. In the
same way, depending on the choice of monoidal category and its weight function, monoidal decompositions
of morphisms give their monoidal width. Once the monoidal category is fixed, the categorical structure gives
a canonical choice for the operations: compositions indexed by the objects and monoidal product. Chapter 4
identifies the appropriate categories of relational structures and graphs to derive the operations for tree and
clique widths.

This chapter identifies the assumptions that correspond to preservation theorems for showing fixed-
parameter tractability for problems on monoidal categories. We exemplify this technique for computing
colimits compositionally.

7.1 Fixed-parameter tractability in monoidal categories

This section shows that compositional algorithms can solve functorial problems efficiently on inputs of boun-
ded monoidal width (Theorem 7.6). As for the analogous result for checking formulae on relational structures
(Theorem 2.52), this result is a relatively straightforward consequence of its assumptions. In fact, the diffi-
cult part of showing fixed-parameter tractability lies in showing a preservation theorem, which Theorem 2.52
assumes as hypothesis, and we make a similar assumption for Theorem 7.6. Nonetheless, this result is still
informative as it provides a general strategy for proving fixed-parameter tractability of problems on monoidal
categories.
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The class of problems covered by this result is wider than computing the theory of relational structures.
The possible inputs are the morphisms of a fixed monoidal category C and, for a morphism f: A - B,
we seek to compute S(f). We always assume that the input morphism f is provided with a monoidal de-
composition d € D . A divide-and-conquer algorithm requires that the mapping S from inputs to solutions
respects the structure of the monoidal category C, i.e. it is a monoidal functor. For the divide-and-conquer
algorithm to be efficient, combining solutions must also respect the categorical structure. These assump-
tions recast the strategy outlined in Section 2.3, and recalled above, in the categorical setting. The two steps
below expand on this strategy to prove fixed-parameter tractability for problems on monoidal categories.

1. Find a monoidal category whose morphisms are the inputs to the problem we seek to solve. Although
we do not assume that the set of generators is finite, both the examples of structures with sources and
graphs with boundaries are finitely presented props.

2. Show that the problem S is both structurally and computationally compositional.

(a) Show that the mapping S from inputs to solutions defines a strong monoidal functor S : C — D, for
some monoidal category D.

(b) Show that combining solutions S(f;) and S(f,) with the operations of the monoidal category D de-
pends linearly on the sizes of f; and f,, but may depend arbitrarily on the cost of the operation used
to combine them.

With these assumptions, there is a divide-and-conquer algorithm similar to Algorithm 1in Section 2.3 that
computes solutions compositionally. It runs through the monoidal decomposition given as input starting
from the leaves and proceeding bottom-up: it computes the solutions on the leaves by brute-force and
combines them according to the operations that appear in the decomposition. Assumption 2b ensures that
the running time of this algorithm is linear in the size of the monoidal decomposition given as input, but
arbitrarily large on its monoidal width.

Definition 7.1. A problem on morphisms of a monoidal category C is functorial if the mapping from mor-
phisms to solutions is a monoidal functor S : C — D, for some monoidal category D.

The structural part of the preservation theorems recalled in Section 2.3 ensures that the mapping from
structures and graphs to their theories is functorial.

Lemma 7.2. Let ~, g be a class of equivalence relations on the sets C(A, B) of morphisms of a monoidal
category C that respects the categorical structure: if f ~, p f'andg ~p &', then f 58 ~4 ¢ f'5¢’; and,
if f ~ap fland g ~cp &', then f ® g ~49c.8ep /' ® &'. Then, quotienting the sets of morphisms of C
by these equivalence relations gives a monoidal category C/ ~ and a functor Q: C — C/ ~.

Proof. This is a standard result. See, for example [Mac78, Section 11.8]. O

Example 7.3. Recall from Section 4.1 that relational structures with n constants can be seen as morphisms
n — 0 in the category of cospans of relational structures sStruct,. This monoidal category is equivalent to
the finitely presented prop sFrob,. In Section 4.3, morphisms n — 0 in the category MGraph are interpreted
as graphs with n labels. The monoidal category MGraph is equivalent to the finitely presented prop BGraph.

With these interpretations for morphisms in sFrob, and BGraph in mind, we define logical equivalence for
morphisms in these two categories. Twomorphismsg =c: m - G «n :dandg' =c¢' - m > G «<n : d’
in Cospan(UHGraph),, are MSO logically equivalent when the corresponding structures with m +n constants,
(G, [c,d])and (G’,[c’,d']), are MSO logically equivalent. Similarly, two morphisms ((G], L, R, P,[S]): m —
n and ([G’] ,L',R', P, [S]) : m — nin MGraph are MSO logically equivalent when their corresponding
m + n-labelled graphs, (G, (L | R)) and (G’, (L' | R")), are MSO logically equivalent.

We can now apply the preservation theorems recalled in Section 2.3 to obtain that the operations in the
monoidal categories sFrob, and BGraph preserve logical equivalence. By the Feferman-Vaught-Mostowski
(Theorem 2.59) and the Courcelle-Kanté (Theorem 2.60) preservation theorems, MSO logical equivalence
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respects compositions and monoidal product in the monoidal categories sFrob, and BGraph. More in de-
tail, preservation by the disjoint union of relational structures corresponds to preservation by the monoidal
product in sFrob_, while preservation by the disjoint union and fuse operations together gives preservation
by compositions in sFrob,. Similarly, preservation by disjoint union of labelled graphs gives preservation by
monoidal product in BGraph, while preservation by disjoint union, edge creation and bilinear product gives
preservation by compositions in BGraph.

These considerations show that logical equivalence respects the structure of both monoidal categories
sFrob, and BGraph, and we can apply Lemma 7.2 to obtain that MSO logical equivalence defines quotient
categories sFrob,/ =, and BGraph/ =,, ¢4, and monoidal functors T : sFrob, — sFrob,/ =,,¢0 and
R: BGraph — BGraph/ =,,50-

As mentioned above, functorial problems can be solved by divide-and-conquer algorithms that go through
the monoidal decomposition given as input, starting from the leaves. For a problem to be functorial it is

Algorithm 2: MonoidalSolve
Data: a monoidal decomposition d for a morphism f
Result: the value of S(f)
if d = (G) then
‘ compute s:= S(f) by brute force
elseif d = (d;— 3¢ —d,) then
compute s, := MonoidalSolve(d, )
compute s, := MonoidalSolve(d,)
compute s:=s; $gc) 52

Iseif d = (d,— ® —d,) then
compute s, := MonoidalSolve(d, )
compute s, := MonoidalSolve(d,)
compute s:=5, ® 5,

return s

[¢]

not necessary that the generators of C are finite. However, in the case of computing theories of relational
structures, finiteness is a necessary assumption. Algorithm 1 relies on precomputing all the solutions on the
generators and a table to combine them. This is possible if the generators and the reduction sets of the for-
mulae are finite. We use a slightly different strategy: Algorithm 2 computes the solutions on the generators
as needed.

The preservation theorems, Theorems 2.59 and 2.60, in Section 2.3 have a second computational part.
They show that the theories of structures and graphs can be composed in time that is constant in the size
of the input. The dependency on the cost of the operation can be arbitrarily large because, in the class of
inputs of bounded monoidal width, this cost is also bounded.

Definition 7.4. An algorithm that computes the solution S(f) of a functorial problem on a monoidal category
C with weight function w : A — N is compositional if there is some function ¢ : N — N such that:
1. computing S(f) takes O(c(w(f)));
2. forf: A— Candg: C — BinC,andgiven s = S(f) and? = S(g), computing the composition s g ¢
along the object S(C) in D takes O(c(w(C)));
3. for f and g in C, and given s = S(f) and t = S(g), computing the monoidal product s ® ¢ in D takes
0O(c(0)).

For the problem of checking formulae on structures and graphs, having effectively smooth operations
implies having a compositional algorithm.
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Example 7.5. Computing the logical equivalence classes of graphs and relational structures is equivalent to
computing their theories. When the operations are effectively smooth, the theories can be combined effi-
ciently with a look-up table (Definition 2.51). The look-up table is precomputed in finite time that is constant
in the size of the input, and its size also does not depend on the input, so it can be accessed in constant time.
Constant time is less than linear in the input size and the conditions in Definition 7.4 are satisfied.

Denote with C, (A, B) the set of morphisms A — B in C of monoidal width at most k together with a
witness decomposition d € D, of width at most k.

Ci(A,B):={(f.d) : f €C(A,B)andd € D, and wd(d) < k}

On this set, when Algorithm 2 is compositional and the input is provided with a monoidal decomposition,
the algorithm runs in time that is linear in the size of the input.

Theorem 7.6. Computing a functorial problem S on C, (A, B) with a compositional algorithm is linear in
size(d). Explicitly, given an optimal monoidal decomposition of f, computing S(f) takes O(c(k) - size(d)), for
somec: N — N.

Proof. Letd € D, be a monoidal decomposition of a morphism f : A — B with wd(d) < k. We show by
induction on d that running Algorithm 2 takes O(c(k) - size(d)).

Suppose that the decomposition is a leaf, d = (f). Then, the weight of f is bounded by k, and the
size of the decomposition is 1. By hypothesis, w(f) =:wd(d) < k, and computing S(f) takes O(c(w(f))) =
O(c(k) - 1) by Assumption 1.

Suppose that the first node is a composition, d = (d;— §- —d,). Then, the widths of d; and d,, and
the weight of C are bounded by k because the width of d is: wd(d):= max{wd(d,), w(C), wd(d,)} < k by
hypothesis. We apply Assumption 2 and the induction hypothesis to bound the time complexity of computing
S(f) as the composition S(f}) s¢ S(f,) in D.

O(c(W(C))) + O(c(k) - size(dy)) + O(c(k) - size(d,))
= O(c(k) - (size(dy) + 1 + size(d,)))
= O(c(k) - size(d))
Suppose that the first node is a monoidal product, d = (d;— ® —d,). Then, the widths of d; and
d, are bounded by k because the width of d is: wd(d):= max{wd(d,), wd(d,)} < k by hypothesis. We

apply Assumption 3 and the induction hypothesis to calculate the time complexity of computing S(F) as the
monoidal product S(f}) ® S(f>).

0O(c(0)) + O(c(k) - size(d))) + O(c(k) - size(d,))
= O(c(k) - (size(d;) + 1 + size(d,)))
= O(c(k) - size(d))

7.2 Computing colimits compositionally

This section considers the problem of computing finite colimits in a category E that admits them. This is a
functorial problem [RSW08] and we show that it satisfies the assumptions of Theorem 7.6. Diagrams, seen
as graph morphisms to the graph underlying E, are the objects of a category Diag(E) with colimits. There
is a functor that takes a diagram as inputs and returns and object of E, its colimit. However, to make this
problem compositional, we need to lift this functor to discrete cospans.
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The graph |E| underlying the category E is an object of the category Graph , of possibly infinite graphs and
their homomorphisms. We consider the slice category Graph,, /|E|, where objects are diagrams d : G — |E|
and morphisms are commutative triangles. We restrict to finite diagrams, diagrams d : G — |E| where the
graph G is finite.

Definition 7.7. The category Diag(E) of diagrams in E is the full subcategory of Graph /|E| on finite dia-
grams.

There is a functor colim : Diag(E) — E that assigns to each diagram d an object in E that is its colimit.
This functor is unique up to isomorphism. In order to decompose diagrams, we consider discrete cospans of
them. A diagram d : G — |E| is discrete if the graph G is discrete.

Definition 7.8. The category CDiag(E) is the full subcategory of Cospan(Diag(E)) on discrete cospans of
diagrams in E.

Explicitly, objects are graph morphisms X — |E|, i.e. functions X — Obj(E) and morphisms are commu-
tative diagrams of graph homomorphisms.

2N

X — [g| % Y
Composition is given by pushout and monoidal product by the coproduct.

Proposition 7.9 ([RSWO05; RSWO08]). The category CDiag(E) is equivalent to free strict symmetric monoidal
category on the monoidal signature composed of the generators of a Frobenius monoid (Figure 4.1) for every
vertex of |E| and all the edges of |E|, quotiented by the axioms of Frobenius monoids. These generators and
equations are in Figure 7.1.

A A
}A o— A A{ A—@ A B
A A

for all objects A and all morphisms f: A - BinE

e
T
O

E—C

Figure 7.1

"Note that we are using the axiom of choice in this definition.
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Theorem 7.10 ([RSWO08]). There is a monoidal functor Colim : CDiag — Cospan(E) from discrete cospans
of diagrams to cospans in E that extends the colimit functor colim : Diag(E) — E.

The functor Colim makes the problem of computing colimits functorial. For some choices of the category
E, we can show that there is a compositional algorithm for computing colimits.

Colimits in FinSet. Suppose that we are working with a representation of finite sets that allows computa-
tions of disjoint unions in constant time ¢;. Computing the colimit of a finite diagram d : G — |FinSet| by
brute force means to take the disjoint union of the sets d(v) for v € vertices(G) and then quotienting by the
equivalence relation given by the edges of G.

colim d =< | ] d(u))/N

vEvertices(G)

The equivalence relation ~ is the transitive closure of a relation ~,. Two elements in this union, a,b €
I—lvevertices(G) d(v), are related, a ~( b, if and only if there are edges e; = (u,v;) and e, = (u, v,) of G and
an element y € d(u) that maps to a and b: d(e;)(¥) = a and d(e,)(y) = b. We can encode these relations
as square boolean matrices E, and E whose dimension is the sum of the cardinalities of the images of the
functions in the diagram: 3’ c.qqe5() lim(d(e))]. As we do not have further information on the shape of the

colimit, we can bound this size with n = Zvevemces(@ |d(v)|. The matrix E, can be computed in O(n?) time,
it is symmetric and has all the diagonal elements equal to 1. This means that it represents a symmetric and
reflexive relation. The matrix E needs to be computed from E, by transitive closure. A square boolean matrix
A represents a transitive relation if and only if A = A - A. Then, computing E from E; means computing
E,,, = E; - E; until convergence: E,_, = E,. This procedure terminates in at most n* steps and each step
takes O(n3) for matrix multiplication, which gives a running time of O(»°).

Cospans compose by pushout. To show Assumption 2, we need to bound the computational cost of
computing pushouts in Set. The pushout U +y V ofu: Y - U andv: Y — V in Set s their disjoint union
U + V quotiented by the equivalence relation generated by u and v. As for generic colimits, a ~ b if there
isay € Y such that u(y) = a and v(y) = b. The relation ~; can be easily made symmetric and reflexive,
while computing its transitive closure is a bit more computationally involved. We record the relation ~ ina
square boolean matrix E, but, this time, its size can be bound by 2 - |Y'| because |Y'| bounds the number
of elements in the images of both u and v. By the same reasoning as above, we can compute its transitive
closure in O(|Y |°). With the computation of the disjoint union, this makes O(|Y |°> + ¢;) = O(|Y|> and we
have shown Assumption 2.

As just mentioned, computing disjoint unions takes O(c), which satisfies Assumption 3 about computing
monoidal products.

We have shown that colimits in FinSet can be computed compositionally and Theorem 7.6 applies to this
problem.

Colimits in presheaves. Computing the colimit of a finite diagram in a (co)presheaf category [C, FinSet]
means computing the same colimit in FinSet for each object A in C and computing the corresponding unique
morphism for every morphism f : A — Bin C. When the category C is finite, this can be done in finite time.
We assume that this is the case and let s be the maximum between the number of objects and the number
of morphisms.

Consider adiagram d : G — |[C, FinSet]| in the presheaf category [C, FinSet]. This diagram determines
functors D, := d(v), for every vertex v of G, and natural transformations y, := d(e), for every edge e in G.
For every object A in C, the diagram d in [C, FinSet] determines a diagram d, : G — |FinSet| of the same
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shapein FinSet, defined on vertices by d 4(v) := D,(A) and on edges by d 4(e) := y,(A). For afunctorF : C —
FinSet, we let its cardinality to be the maximum cardinality of the sets inits image, |F|:= MAaX 4cobj(C) |[F(A)|.

The colimit of d is computed component-wise: for every object A of C, we compute the colimit in
FinSet of the diagram d 4, and, for every morphism f: A — B in C, we compute the unique colimit func-
tion colim f : colimd, — colimdg. The time complexity of computing colimd , for each object A is
(9(n154), where n,:= Y, cenicesc 144()]. As a consequence, computing all these colimits takes O(s - n),
where n:= Y . .nicesg IPu]- The computation of the corresponding morphisms is irrelevant as it is lin-
ear in s - n. When computing colim d, we recorded all the injections zf : d4s(v) — colimdy, Then, for
each object A of C and each vertex v of G, we define the colimit of f thanks to the universal property:
colim f(z;“(x)) = zf(DUf(x)). The image on some elements in colim d 4 is computed more than once, but,
thanks to the universal property, all these values coincide and we have computed colim f going through at
most s - n elements.

For compositions in Cospan([C, FinSet]), we need to compute pushouts in [C, FinSet]. As explained
above, we can reuse the complexity bounds for FinSet and deduce that the time complexity of computing
the pushout U +y Vof Uand V along Y is O(s - [Y|). Similarly, monoidal products in Cospan([C, FinSet])
correspond to coproducts in [C, FinSet], and computing U + V takes O(s - ¢y).






Chapter 8

Conclusions

This thesis has defined monoidal width, a structural complexity measure of morphisms in monoidal cate-
gories based on the corresponding notion of monoidal decomposition. This interpretation is validated by
the results that show that monoidal width, in the monoidal category of graphs with vertex interfaces, is
equivalent to tree width, and, in the monoidal category of graphs with edge interfaces, is equivalent to
clique width. We have concluded with a fixed-parameter tractability result. Functorial problems that admit
a compositional algorithm can be computed in linear time on morphisms of bounded monoidal width. An
example of such a problem is computing colimits in presheaf categories.

Future work Monoidal categories often represent process theories or semantic universes for programming
languages. Applications of monoidal width to such monoidal categories remain to be explored. There may
be problems on these monoidal categories that satisfy the assumptions for the monoidal fixed-parameter
tractability result and, for these problems, we would obtain that they are tractable on morphisms of bounded
monoidal width.

This work does not deal with the problem of finding efficient decompositions in general, which is, indeed,
an important problem. We do not expect to find a general purpose tractable algorithm for finding efficient
monoidal decompositions, as that would particularise to one for clique decompositions and it is still an open
problem whether graphs of bounded clique width can be recognised in polynomial time [OumO08]. However,
this problem could be studied in some finitely presented props. The results about categories with biprod-
ucts in Section 3.3 are a first step in this direction as they construct, given unique ®-decompositions of the
objects, minimal monoidal decompositions of morphisms.

Monoidal width can capture tree width and clique width by changing the categorical algebra that de-
scribes graphs. Twin width [Bon+21] is a recently defined graph width measure which is similar in flavour to
clique width but stronger, in the sense that bounded twin width graphs must have bounded clique width but
vice versa does not hold. Future work could look for a categorical algebra to capture twin width.

Game comonads [ADW17] capture decompositions with coalgebras. On the other hand, produoidal cate-
gories give the algebra for decompositions in monoidal categories [EHR23]. These lines of work suggest that
there might be some categorical structure that captures monoidal decompositions as well.
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