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Abstract
Compositionality lies at the core of abstraction: local windows on a problem can be combined into a globalunderstanding of it; models and code can be written so that parts can be reused or replaced without break-ing thewhole; problems can be solved by combining partial solutions. Compositionalitymay give algorithmicadvantages as well. This is the case of divide-and-conquer algorithms, which use the compositional struc-ture of problems to solve them efficiently. Courcelle’s theorems are a remarkable example. They rely on adivide-and-conquer algorithm to show that checking monadic second order formulae is tractable on graphsof bounded tree or clique width.The idea behind fixed-parameter tractability results of this kind is that divide-and-conquer algorithmsare efficient on inputs that are structurally simple. In the case of graphs, tree and clique widths measuretheir structural complexity. When a graph has low width, combining partial solutions on it is tractable. Thiswork aims to bring the techniques from parametrised complexity to monoidal categories.This thesis introduces monoidal width to measure the structural complexity of morphisms in monoidalcategories and investigates some of its properties. By choosing suitable categorical algebras, monoidal widthcaptures tree width and clique width. Monoidal width relies on monoidal decompositions in the same waygraph widths rely on graph decompositions and graph expressions. Monoidal decompositions are terms inthe language of monoidal categories that specify the compositional structure needed by divide-and-conqueralgorithms. A general strategy to obtain fixed-parameter tractability results for problems on monoidal cat-egories highlights the conceptual importance of monoidal width: compositional algorithms make functorialproblems tractable on morphisms of bounded monoidal width.





Kokkuvõte
Kompositsioonilisus on abstraktsiooni juures tsentraalne: ülesandemõistmise osade kaupa saab kokkupannaselle tervikuna mõistmiseks; mudeleid ja koodi saab arendada nii, et nende osi on võimalik asendada võitaaskasutada tervikut rikkumata; ülesande terviklahendus on leitav osalahendusi kombineerides. Komposit-sioonilisus võib anda ka algoritmilisi eeliseid. Nii on näiteks jaga-ja-valitse algoritmidega, mille puhul üle-sande efektiivseks lahendamiseks kasutatakse ära selle kompositsioonilist struktuuri. Üheks väljapaistvaksnäiteks sellest on Courcelle’i teoreemid. Need põhinevad jaga-ja-valitse algoritmil ning näitavad, et mon-aadiliste teist järku valemite kontroll on praktiliselt arvutatav nendel graafidel, mille puu- või klikilaius ontõkestatud.Taoliste fikseeritud parameetritega praktilise arvutatavuse tulemuste aluseks on asjaolu, et jaga-ja-valitsealgoritmid on tõhusad struktuurselt lihtsate sisendite korral. Graafi puu- ja klikilaius mõõdavad selle struktu-urset keerukust ning kui graafi laius on väike, on osalahenduste kombineerimine praktiliselt arvutatav. Siinnetöö üritab tuua parametriseeritud keerukuses kasutatavad võtted monoidilisse kategooriateooriasse.Käesolev doktoritöö toob sisse monoidilise laiuse mõiste, et mõõta morfismide struktuurset keerukustmonoidilistes kategooriates, ning uurib mõningaid selle omadusi. Valides sobiva kategoorsed algebrad, onmonoidiline laius puu- ja klikilaiuse vasteks. Monoidiline laius põhineb monoidilistel dekompositsioonidelsamal viisil, nagu graafilaiused põhinevad graafi-dekompositsioonidel ning graafiavaldistel. Monoidiliseddekompositsioonid on termid monoidiliste kategooriate keeles, mis kirjeldavad jaga-ja-valitse algoritmidelevajaliku kompositsioonilise struktuuri. Üldine strateegia monoidiliste kategooriate ülesannetel fikseeritudparameetritega praktilise arvutatavuse tulemuste saamiseks toob esile monoidilise laiuse kontseptuaalseolulisuse: kompositsioonilised algoritmid muudavad funktoriaalsed ülesanded praktiliselt arvutatavaks tõ-kestatud monoidilise laiusega morfismidel.
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Chapter 1

Introduction

Famously, Caesar used to say “divide et impera”, divide and conquer, as a strategy to overcome enemies.This strategy is sometimes also useful to design algorithms. When the input has a simple structure, solvingthe problem on its components and then combining the solutions may be more efficient than solving it onthe input as a whole. One of themost famous results in parametrised complexity, Courcelle’s theorem, relieson a divide-and-conquer algorithm to bound the time complexity of solving a class of problems on graphs.

1.1 Fixed-parameter tractability

Parametrised complexity studies computational complexity of problems depending on parameters. Theproblems that are tractable for given choices of the parameter are called fixed-parameter tractable. Cour-celle’s theorem [Cou92a] is one of the most famous results in this field, and shows fixed-parameter tractabi-lity of checking monadic second order formulae on graphs. This is a hard problem in general, but becomestractable when the input is restricted to belong to a class of bounded-width graphs.
There are similar results for different notions of width for graphs [Cou92a; CMR00; CO00]. We will beconcerned with the general structure of these results rather than their details. They all rely on a decompo-sition algebra for graphs to determine the corresponding graph width. A decomposition algebra is a set ofoperations and a set of generators that allow graphs to be expressed as terms. Each operation has a cost andeach term is priced according to the most expensive operation in it. Different terms may express the samegraph and have different costs. The width of a graph is the cost of one of its cheapest terms.
The second ingredient for fixed-parameter tractability results like Courcelle’s is a preservation theorem.Given a decomposition algebra for graphs and a logic for them, a preservation theorem states that the op-erations preserve logical equivalence. As a consequence, given a term for a graph, the value of a formulaon it can be determined compositionally. This computation is tractable when the input graphs are restrictedto a bounded-width class because combining partial solutions takes constant time in the size of the inputgraph. A famous result of this kind is the Feferman-Vaught-Mostowski theorem [Fef57; FV59] that shows, viaEhrenfeucht-Fraissé games [Fra55; Fra57; Ehr57; Ehr61], that the disjoint union of graphs preserves monadicsecond order logical equivalence.
Each fixed-parameter tractability result for checking monadic second order formulae on graphs relies onits owndecomposition algebra and relative preservation theorem. TheCourcelle-Makowsky theorem [CM02;Mak04] summarises the common technique to all these results. It assumes the existence of a decompositionalgebra and a corresponding preservation theorem, which is the difficult part to show, and deduces fixed pa-rameter tractability of checking formulae on graphs. This result is an almost straightforward consequence of
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2 CHAPTER 1. INTRODUCTION
its assumptions but highlights the common proof structure to the mentioned graph fixed-parameter tracta-bility results.

The insight that led to these results is the expression of graphs as terms. The graph widths defined byoperations and generators had already been defined combinatorially [RS83; RS86; RS91; OS06] and led tofundamental results in graph theory and combinatorics, such as the famous Robertson and Seymour graphminor theorem [RS04]. However, the algebraic perspective on them gave the possibility to take advantageof graph decompositions to obtain algorithmic results. We bring these insights to the world of monoidalcategories, where we definemonoidal decompositions and the relative monoidal width. We show that com-positional algorithms make functorial problems tractable on morphisms of bounded monoidal width.
Monoidal categories often serve as semantic universes for programs. Depending on the additional struc-ture and properties of the chosen monoidal category, its morphisms may represent different kinds of com-putations, either classical [Lam86] or with effects [Gui80; Mog91]. With these models, program verificationmay be done compositionally and one may be able to obtain fixed-parameter tractability results.
For graph decompositions, different sets of operations may define the same width, while for monoidaldecompositions, the choice ofmonoidal category determines the decomposition algebra: the operations arecompositions and monoidal product. These are the canonical choice among all the possible operations thatdefine equivalent width measures.

1.2 Monoidal decompositions

Wedefinemonoidal decompositions andmonoidal widthmimicking Courcelle’s algebraic decompositions ofgraphs and their width. While for graphs the choice of operations determines the decomposition algebra, formonoidal decompositions it is the choice of monoidal category that determines, canonically, the operations:compositions andmonoidal product. A monoidal decomposition of a morphism in a monoidal category is anexpression of this morphism in terms of compositions and monoidal products of “smaller” morphisms.
There may be different monoidal decompositions of the same morphism, some more efficient than oth-ers, and monoidal width measures the cost of a most efficient decomposition. The cost of a decompositiondepends on the operations that appear in it and their cost. The composition of two morphisms may repre-sent running two processes one after the other with some information passed along a channel from the firstprocess to the second, or it may represent running two processes that have access to the same resource andneed to synchronise along a common boundary to access the resource. Resource sharing, synchronisationand information sharing are costly operations and their cost increaseswith the size of the commonboundary.We assign to composition operations a cost that increases with the size of the shared boundary. On the otherhand, monoidal products usually represent running processes in parallel, without communication. Monoi-dal products are, thus, usually, cheap operations with constant cost. With these choices, monoidal widthincentivises parallelism: highly parallelised monoidal decompositions will be cheaper that highly sequentialones. The monoidal decompositions in Figure 1.1 exemplify this phenomenon. The monoidal decompositionon the left cuts the morphism along 4 wires, while the biggest cut in the one on the right is along 2 wires.
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Figure 1.1: An inefficient (left) and an efficient (right) monoidal decompositions.



1.3. RELATED WORK 3
We study monoidal width in two categorical algebras of graphs. We give syntactic presentations of themin terms of generators and equations. The algebra of discrete cospans of graphs is equivalent to the propgenerated by a Frobeniusmonoidwith an added “edge” generator. The algebra of graphswith dangling edgesis equivalent to the prop generated by a bialgebra with an added “vertex” generator. We show that Cour-celle’s operations for tree width derive from compositions and monoidal product in the monoidal categoryof Frobenius graphs, while those for rank width and clique width derive from compositions and monoidalproduct in the monoidal category of bialgebra graphs. In fact, we show that monoidal width in the first ofthese categories is equivalent to tree width, while, in the second, it is equivalent to clique width.Inspired by the Courcelle-Makowsky analogous result for graphs [CM02; Mak04], we conclude by givinga general strategy for showing fixed-parameter tractability of problems on monoidal categories. The choiceof decomposition algebra is given by fixing amonoidal category of inputs. The structural part of the preserva-tion theorems corresponds to functoriality of the mapping from inputs to solutions, and the computationalpart of these results bounds the cost of combining partial solutions. Composing two partial solutions needsto be linear in the size of the components, but it can be arbitrarily complex in the size of the common bound-ary. These conditions make computing solutions efficient on inputs of bounded monoidal width.

1.3 Related work
Since the first definitions of graph decompositions and relativewidths, there have been twomain approachesto them. A more combinatorial one, where decompositions are combinatorial objects, paths or trees withadditional data, and a more algebraic one, where decompositions are terms that express graphs as the re-sult of operations applied to generators. Some of the first combinatorial approaches to graph widths definetree decompositions [BB73; Hal76], which proved fundamental for Robertson and Seymour’s graph minorsseries [RS83] that culminated with the proof of the graph minors theorem [RS04]. This result shows a com-binatorial property of graphs: they are well-quasi-ordered under the graphminor partial order. On the otherhand, the algebraic and syntactic approaches to graph decompositions led to results in complexity theory.One of the earliest syntactic definitions of graph decompositions define them in terms of operations andgenerators [PRS88]. This idea was rediscovered by Bauderon and Courcelle [BC87] and developed into Cour-celle’s monadic second order logic of graphs series [Cou90]. This line of research led to fixed-parametertractability results for graphs [Cou92a; CO00; CK09].Mowshowitz and Dehmer’s review [MD12] give a thorough taxonomy of graph complexity measures,while Bodlaender’s classical review [Bod93b] and a more recent one by Hliněnỳ et al. [Hli+08] summarisealgorithmic applications of tree width and related widths.As mentioned above, the algebraic approach to graph decompositions led to results in parametrisedcomplexity, but this is one of few examples where algebraic, or “structural”, methods have been adopted incomplexity theory. Considered the success of this perspective, other recent lines of research aim to bridgethe gap between algebraic methods and complexity results, to relate structure and power [AS21].
Graph grammars. Our work follows the syntactic approach to graph decompositions by Bauderon andCourcelle [BC87]. This started the monadic second order logic of graphs series [Cou90] where syntacticdecompositions of graphs give the possibility to show fixed-parameter tractability of checking monadic sec-ond order formulae on graphs. Different decomposition algebras define different classes of bounded-widthgraphs. The first decomposition algebra defines tree width [BC87; Cou90] and leads to the relative fixed-parameter tractability result [Cou92a]. Similar results hold for decomposition algebras defining clique widthand rank width [CER93; CO00; CK07; CK09]. These results share the proof structure, which is summarisedby Courcelle and Makowsky [CM02; Mak04]. We will recall definitions and results about these graph de-compositions in Section 2.3 in detail.



4 CHAPTER 1. INTRODUCTION
Althoughwewill not refer to it later on, it isworthmentioning the twinwidth series [Bon+21] that recentlystarted an active line of research by defining a graph complexity measure that is stronger than the knownones but still admits fixed-parameter tractable first-order model checking, twin width [Bon+21].

Game comonads. Another prolific approach to connect structure and power targets logic games. Logicgames are a common, if not the most common, technique to show preservation theorems. The proof of theFeferman-Vaught-Mostowski preservation theorem [Fef57; FV59] relies on Ehrenfeucht-Fraissé games [Fra55;Fra57; Ehr57; Ehr61] to show logical equivalence of structures. A logic game consists of two players, Spoilerand Duplicator, that in turns choose vertices of two relational structures. Spoiler tries to show that the twostructures are not logically equivalent, while Duplicator’s goal is to show that they are. The details of themoves of each player and the details of the rules of the game determine the logic fragment that defineslogical equivalence.Game comonads are families of comonads on the category of relational structures and their homomor-phisms that are indexed by a resource. For a game comonad 𝐂, the comonad 𝐂𝑘 associates to a relationalstructure the relational structure of plays on it that use atmost 𝑘 resources. The type of resource determinesthe type of logical equivalence of the corresponding game. Intuitively, the resource bounds the size of thewindows though which the relational structure can be looked at.Game comonads unify logic games and their corresponding logical equivalence with graph widths, andsystematise these correspondences. For a game comonad𝐂, the existence of a winning strategy for Duplica-tor on structures𝐺 and𝐻 is witnessed by the existence of a coKleisli morphism or isomorphism𝐂𝑘(𝐺) → 𝐻and characterises logical equivalence for a specific logic fragment. Different comonads define logical equiva-lence for different logical fragments [ADW17; AM21; AS21; ÓD21;MS22]. Widths are, instead, characterised bythe coalgebra number. The coalgebra number of a structure𝐺with respect to a game comonad𝐂 is themin-imum 𝑘 for which𝐂𝑘 admits a𝐺-coalgebra𝐺 → 𝐂𝑘(𝐺). The pebbling comonad defines tree width [ADW17],the Ehrenfeucht-Fraissé comonad defines tree depth [AS21] and the pebble-relation comonad defines pathwidth [MS22].The game comonad approach recovers classical results from finite model theory [Pai20; DJR21; AJP22]and gives general strategies to obtain new ones [AR23]. In particular, Jakl, Marsden and Shah [JMS23] focuson abstracting the Feferman-Vaught-Mostowski preservation theorems, an issue we do not touch upon.
Cospan decompositions. Blume et al. [Blu+11] noticed that the categorical algebra behind tree decompo-sitions is that of cospans of graphs. Their work characterises path and tree decompositions in terms of path-and tree-shaped colimits in the category of graphs and their homomorphisms. Following a similar intuition,Bumpus, Kocsis and Master [BK21; Bum21; BKM23] generalised tree decompositions beyond graphs. Thestarting point of this line of work is a characterisation of tree width in terms of Halin’s S-functions [Hal76].These approaches define decompositions “globally”: they are functors whose domain determines the shapeof the decomposition.

1.4 Contributions and synopsis
This thesis defines monoidal width and investigates some of its properties. It is based on published work bythe author [DHS21; DS22; DS23].• Monoidal width and monoidal decompositions are defined in Section 3.1.• By choosing a suitable categorical algebra of graphs with vertex interfaces, Theorem 5.16 shows equiva-lence of monoidal width with branch width and tree width.• Similarly, Theorem 6.19 relies on a categorical algebra of graphs with edge interfaces to show equivalenceof monoidal width with rank width and clique width.



1.4. CONTRIBUTIONS AND SYNOPSIS 5
• Theorem 4.44 provides a syntactic presentation of graphs with edge interfaces.• Theorem 7.6 shows that functorial problems on morphisms in monoidal categories that admit a compo-sitional algorithm (Definitions 7.1 and 7.4) are fixed-parameter tractable with parameter monoidal width.This result mimicks the Courcelle-Makowsky result about fixed-parameter tractability of checking formu-lae on relational structures.
Synopsis Chapter 2 gives some background on both category theory and graph decompositions. Section 2.1recalls monoidal categories and props, while Sections 2.2 and 2.3 recall graph widths and their application tofixed-parameter tractability results. In particular, we recall the definitions of tree width, branch width, cliquewidth and rank width, both the original combinatorial ones and the ones in terms of operations on graphsand generators.Chapter 3 introduces monoidal width and two simple examples. The definition of monoidal decomposi-tions and monoidal width are in Section 3.1, and Sections 3.2 and 3.3 study monoidal width of coherent copymorphisms and in categories with biproducts.The main study case for monoidal decompositions are graphs. Chapter 4 recalls two categories wheremorphisms are graphs with interfaces, one where the interfaces are vertices, in Section 4.1, and one wherethe interfaces are edges, in Section 4.3. Graphs with vertex interfaces are discrete cospans of graphs andcan be syntactically presented by a Frobenius monoid with an added “edge” generator. Graphs with edgeinterfaces are matrices quotiented by an equivalence relation and can be syntactically presented by a bialge-bra with an added “vertex” generator. We show how compositions and monoidal products in the monoidalcategory of Frobenius graphs express the operations for tree decompositions, while those in the monoidalcategory of bialgebra graphs express the operations for rank and clique decompositions. Chapter 5 is dedi-cated to showing that monoidal width in the monoidal category of Frobenius graphs is equivalent to branchand tree widths, while Chapter 6 shows that monoidal width in the monoidal category of bialgebra graphsis equivalent to rank and clique widths. These equivalences rely on constructing a monoidal decompositionfrom a branch or rank decomposition and vice versa. As intermediate step between monoidal and graphdecompositions we construct inductive branch and rank decompositions.Chapter 7 concludes with a version of the Courcelle-Makowsky theorem for fixed-parameter tractabilityfor problems on monoidal categories. Section 7.2 applies this result to the case of computing colimits inpresheaf categories.





Chapter 2

Background

This chapter introduces some background about monoidal categories and fixed-parameter tractability in theattempt tomake this work accessible fromboth the “structure” community studying category theory and the“power” community studying computational complexity. Section 2.1 recalls the definitions of monoidal cate-gory and prop, and their string diagrammatic syntax and interpretation as theories of processes. Section 2.3recalls relational structures, some preservation theorems and their consequences as fixed-parameter trac-tability results.

2.1 Monoidal categories
Monoidal categories [Mac63] often serve as process theories. Depending on the additional properties andstructure on the chosen monoidal category, its morphisms may represent classical computations [Lam86;JH90], computations with effects [Gui80; Mog91; AM99; CFS16; Rom23] or different kinds of computationalmodels, from automata [KSW97b; KSW97a; Di +23; Di +21a], to signal flow graphs [BSZ14; BSZ15] and da-taflow computations [Oli84; Şte86b; Şte86a; KSW99; KSW02; UV08; MHH16; SK19; CVP21; DFR22; Gar23].Similarly, they may represent processes of different kinds, like stochastic processes [Pan99; Fri20; Sta17;Ste21; DR23], linear processes [BSZ17; Bon+19b; Bon+19a], partial processes [Car87; RR88; CO89; CL07; Di+21b], or quantum processes [AC09; CS12; HV19]. Morphisms are depicted as boxes with input and outputwires. These wires are the objects, which specify the resources that can be transformed by processes.

𝑓𝐴 𝐵 ℎ
𝐴1
𝐴2
𝐴3

𝐵1
𝐵2

The categorical structure allows processes to be composed sequentially: for twomorphisms 𝑓 ∶ 𝐴 → 𝐵 and
𝑔∶ 𝐵 → 𝐶 , there is a composite morphism 𝑓 # 𝑔∶ 𝐴 → 𝐶 that, usually, represent the process of executing
𝑓 first and then 𝑔.

𝑓 𝑔𝐴 𝐶

The monoidal structure also allows morphisms to be composed in parallel: for two morphisms 𝑓 ∶ 𝐴 → 𝐵and 𝑓 ′ ∶ 𝐴′ → 𝐵′, there is a composite morphism 𝑓 ⊗ 𝑓 ′ ∶ 𝐴⊗ 𝐴′ → 𝐵 ⊗ 𝐵′ that, usually, represent theprocess of executing 𝑓 and 𝑓 ′ at the same time.
𝑓

𝑓 ′

𝐴 𝐵

𝐴′ 𝐵′

7



8 CHAPTER 2. BACKGROUND
Both these composition operations have units. The identity morphisms 𝟙𝐴 are the units for sequential com-position: they represent the process that “does nothing” to a resource, so composing sequentially with theidentity morphism should not change the process.

𝑓𝐴 𝐵 = 𝑓𝐴 𝐵 = 𝑓𝐴 𝐵

The monoidal unit 𝐼 is the unit for parallel composition: it represents “absence of resources”, so a processthat produces as outputs, or requires as inputs, a resource 𝐴 and the monoidal unit 𝐼 , it is essentially thesame as the same process only producing, or requiring,𝐴. This reflects in the algebra of monoidal categorieswith natural isomorphisms 𝐴⊗ 𝐼 ≅ 𝐴 ≅ 𝐼 ⊗𝐴. Some processes may not take any inputs, 𝑠∶ 𝐼 → 𝐵, or donot produce any outputs, 𝑡∶ 𝐴→ 𝐼 .
𝑠 𝐵 𝑡𝐴

The string diagrammatic syntax is convenient because it hides the bureaucracy isomorphisms that ensureassociativity and unitality of themonoidal structure, and equations like functoriality of themonoidal product,
(𝑓 ⊗ 𝑓 ′) # (𝑔 ⊗ 𝑔′) = (𝑓 # 𝑔)⊗ (𝑓 ′ # 𝑔′) also become trivial in string diagrams.

𝑓 𝑔

𝑓 ′ 𝑔′

𝐴 𝐶

𝐴′ 𝐶 ′

Amonoidal category is a category with extra structure, themonoidal product⊗ andmonoidal unit 𝐼 , subjectto coherence conditions given by natural transformations that witness associativity, 𝛼, and unitality, 𝜆 and
𝜌, of the monoidal structure.
Definition 2.1 ([Mac63]). Amonoidal category (𝖢, ⊗, 𝐼) is given by a category𝖢, a functor (−⊗ = )∶ 𝖢×𝖢 →
𝖢 and an object 𝐼 of 𝖢 with coherence natural isomorphisms 𝛼∶ (− ⊗ ( = ⊗ ≡)) → ((−⊗ = )⊗ ≡), theassociator, 𝜆∶ (𝐼 ⊗ −) → 𝟙, the left unitor, and 𝜌∶ (−⊗ 𝐼) → 𝟙, the right unitor, satisfying the pentagonand triangle equations below.

𝐴⊗ ((𝐵 ⊗ 𝐶)⊗𝐷)

𝐴⊗ (𝐵 ⊗ (𝐶 ⊗𝐷)) (𝐴⊗ (𝐵 ⊗ 𝐶))⊗𝐷

(𝐴⊗ 𝐵)⊗ (𝐶 ⊗𝐷) ((𝐴⊗ 𝐵)⊗𝐶)⊗𝐷

𝛼𝐴,(𝐵⊗𝐶),𝐷𝟙⊗𝛼𝐵,𝐶,𝐷

𝛼𝐴,𝐵,(𝐶⊗𝐷) 𝛼𝐴,𝐵,𝐶⊗𝟙

𝛼(𝐴⊗𝐵),𝐶,𝐷

(𝐴⊗ 𝐼)⊗𝐵 𝐴⊗ (𝐼 ⊗ 𝐵)

𝐴⊗ 𝐵

𝛼𝐴,𝐼,𝐵

𝜌𝐴⊗𝟙 𝟙⊗𝜆𝐵

A monoidal category is strict if the coherence isomorphisms are identities.
Morphisms ofmonoidal categories aremonoidal functors, which are functors that preserve themonoidalstructure.

Definition 2.2. A (strong) monoidal functor 𝐅∶ (𝖢, ⊗, 𝐼) → (𝖣,⊠, 𝐽 ) between two monoidal categories isa functor 𝐅∶ 𝖢 → 𝖣 between the underlying categories that respects the monoidal structure. This meansthat there are natural isomorphisms 𝜀∶ 𝐽 → 𝐅(𝐼) and 𝜇∶ 𝐅(−)⊠ 𝐅( = ) → 𝐅(−⊗ = ) that are associativeand unital.
(𝐅(𝐴)⊠ 𝐅(𝐵))⊠ 𝐅(𝐶) 𝐅(𝐴)⊠ (𝐅(𝐵)⊠ 𝐅(𝐶))

(𝐅(𝐴⊗ 𝐵)⊠ 𝐅(𝐶) 𝐅(𝐴)⊠ 𝐅(𝐵 ⊗ 𝐶))

(𝐅((𝐴⊗ 𝐵)⊗𝐶) 𝐅(𝐴⊗ (𝐵 ⊗ 𝐶))

𝛼𝐅

𝜇⊠𝟙 𝟙⊠𝜇

𝜇 𝜇
𝐅(𝛼)
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𝐽 ⊠ 𝐅(𝐴) 𝐅(𝐽 )⊠ 𝐅(𝐴)

𝐅(𝐴) 𝐅(𝐼 ⊗ 𝐴)

𝜀⊠𝟙

𝜆𝐅 𝜇

𝐅(𝜆)

𝐅(𝐴)⊠ 𝐽 𝐅(𝐴)⊠ 𝐅(𝐽 )

𝐅(𝐴) 𝐅(𝐴⊗ 𝐼)

𝜀⊠𝟙

𝜌𝐅 𝜇

𝐅(𝜌)

Locally small monoidal categories and monoidal functors form a monoidal category𝖬𝗈𝗇𝖢𝖺𝗍 with the Carte-sian product and the one-object category.
Example 2.3 (The monoidal category of hypergraphs). A hypergraph 𝐺 = (𝑉 ,𝐸, 𝖾𝗇𝖽𝗌) is a set of vertices 𝑉 ,a set of edges 𝐸 and a function 𝖾𝗇𝖽𝗌∶ 𝐸 → ℘(𝑉 )1. A morphism ℎ∶ 𝐺 → 𝐻 of graphs is a pair of functions
ℎ𝑉 ∶ 𝑉𝐺 → 𝑉𝐻 and ℎ𝐸 ∶ 𝐸𝐺 → 𝐸𝐻 that preserve the adjacency relation: ℎ𝐸 # 𝖾𝗇𝖽𝗌𝐻 = 𝖾𝗇𝖽𝗌𝐺 # ℘(ℎ𝑉 ).Hypergraphs and their homomorphisms form a monoidal category 𝖴𝖧𝖦𝗋𝖺𝗉𝗁 with the coproduct monoidalstructure where the monoidal product is component-wise disjoint union and the monoidal unit is the emptygraph.

The Coherence Theorem for monoidal categories [Mac78, Section VII.2] states that all well-typed equa-tions between morphisms constructed only from 𝛼, 𝜆, 𝜌 and the categorical and monoidal structure hold. Aconsequence of this result is the Strictification Theorem [Mac78, Section XI.3].
Theorem 2.4 (Strictification [Mac78]). Every monoidal category is monoidally equivalent to a strict one.

The Coherence and Strictification Theorems allow us to forget about associators and unitors when show-ing equalities between morphisms.
Remark 2.5. Let 𝖢 be a monoidal category, 𝖲 be its strictification and let 𝐇∶ 𝖢 → 𝖲 and 𝐀∶ 𝖲 → 𝖢 bethe strong monoidal functors giving the equivalence between them. The Coherence Theorem gives a uniquenatural isomorphism 𝜙𝐴 ∶ 𝐴 ≅ 𝐀(𝐇(𝐴)). For each morphism 𝑓 ∶ 𝐴 → 𝐵 in 𝖢, its image 𝐀(𝐇(𝑓 )) doesnot necessarily coincide with 𝑓 , but 𝑓 = 𝜙𝐴 # 𝐀(𝐇(𝑓 )) # 𝜙−1

𝐵 . This means that, every time we show an
equality 𝑢 = 𝑣 between morphisms 𝑢, 𝑣∶ 𝑋 → 𝑌 in the strictification 𝖲, we can deduce that 𝑓 = 𝑔,for all objects 𝐴 and 𝐵 and morphisms 𝑓, 𝑔∶ 𝐴 → 𝐵 in 𝖢 such that 𝐇(𝑓 ) = 𝑢 and 𝐇(𝑔) = 𝑣, because
𝑓 = 𝜙𝐴 #𝐀(𝑢) #𝜙−1

𝐵 = 𝜙𝐴 #𝐀(𝑣) #𝜙−1
𝐵 = 𝑔. In particular, a syntax for strict monoidal categories gives a syntaxfor monoidal categories.

Example 2.6 (The monoidal category of monoidal signatures). A monoidal signature Σ = 𝐸 ⇉ 𝑉 ∗ is aset of types 𝑉 , a set of generators 𝐸, and source and target functions 𝗌, 𝗍∶ 𝐸 → 𝑉 ∗ that associate toeach generator the types of its inputs and outputs. A monoidal signature is one-sorted if 𝑉 contains onlyone element. A morphism ℎ∶ Σ → Σ′ of monoidal signatures is a pair of functions ℎ𝑉 ∶ 𝑉 → 𝑉 ′ and
ℎ𝐸 ∶ 𝐸 → 𝐸′ that preserve the inputs and outputs: ℎ𝐸 #𝑠′ = 𝑠 #ℎ∗𝑉 and ℎ𝐸 # 𝑡′ = 𝑡 #ℎ∗𝑉 . Monoidal signaturesand their morphisms form amonoidal category𝖬𝗈𝗇𝖲𝗂𝗀wheremonoidal product is disjoint union. This is thecomma category (𝟙 ↓ 𝐋) for the identity functor and the functor 𝐋∶ 𝑉 → 𝑉 ∗ × 𝑉 ∗. One-sorted monoidalsignatures form a full subcategory 𝟣𝖬𝗈𝗇𝖲𝗂𝗀 of𝖬𝗈𝗇𝖲𝗂𝗀.

Given amonoidal signatureΣ, a string diagramoverΣ is obtained by composing sequentially or in parallelsome of the generators in Σ. String diagrams are a convenient and formal syntax for monoidal categories.More precisely, there is an adjunction between the category𝖬𝗈𝗇𝖲𝗂𝗀 ofmonoidal signatures and the category
𝖬𝗈𝗇𝖢𝖺𝗍 of monoidal categories, where the free monoidal category on a monoidal signature Σ is given bystring diagrams on Σ [JS91, Theorem 1.2]. See Selinger’s survey [Sel11] for an overview of string diagrammaticcalculi.
Theorem 2.7 ([JS91]). String diagrams on a monoidal signature Σ form a strict monoidal category and, infact, the free strict monoidal category on Σ.

1We indicate with℘ the covariant powerset functor.
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Symmetric monoidal categories are monoidal categories equipped with processes , the symmetries,that permute the order of resources. This family of processes is compatible with the monoidal structure,

𝐴⊗ 𝐵

𝐶

𝐶

𝐴⊗ 𝐵
=

𝐴

𝐵

𝐶

𝐶

𝐴

𝐵

and 𝐴

𝐵 ⊗ 𝐶

𝐵 ⊗ 𝐶

𝐴
=

𝐴

𝐵

𝐶

𝐶

𝐴

𝐵

,

it defines a natural transformation,
𝑓

𝑔

𝐴

𝐶

𝐷

𝐵
=

𝑓

𝑔𝐴

𝐶

𝐷

𝐵
,

and it is an isomorphism,
𝐴

𝐵

𝐴

𝐵
=

𝐴

𝐵

𝐴

𝐵
.

Definition 2.8. A braided monoidal category is a monoidal category (𝖢, ⊗, 𝐼) with a natural isomorphism
𝜎 ∶ (−⊗ = ) → ( = ⊗−) that is compatible with the monoidal product.

𝐴⊗ (𝐵 ⊗ 𝐶) (𝐴⊗ 𝐵)⊗𝐶

𝐴⊗ (𝐶 ⊗ 𝐵) 𝐶 ⊗ (𝐴⊗ 𝐵)

(𝐴⊗ 𝐶)⊗𝐵 (𝐶 ⊗ 𝐴)⊗𝐵

𝛼

𝟙⊗𝜎𝐵,𝐶 𝜎𝐴⊗𝐵,𝐶

𝛼 𝛼

𝜎𝐴,𝐶⊗𝟙

(𝐴⊗ 𝐵)⊗𝐶 𝐴⊗ (𝐵 ⊗ 𝐶)

(𝐵 ⊗𝐴)⊗𝐶 (𝐵 ⊗ 𝐶)⊗𝐴

𝐵 ⊗ (𝐴⊗ 𝐶) 𝐵 ⊗ (𝐶 ⊗ 𝐴)

𝛼−1

𝜎𝐴,𝐵⊗𝟙 𝜎𝐴,𝐵⊗𝐶

𝛼−1 𝛼−1

𝟙⊗𝜎𝐴,𝐶

A braided monoidal category is symmetric if the inverse of 𝜎𝐴,𝐵 is 𝜎𝐵,𝐴.
Example 2.9. The monoidal category of graphs is symmetric with the obvious isomorphism lifted from thecategory 𝖲𝖾𝗍 of sets and functions.

Symmetric monoidal functors are monoidal functors that preserve the symmetries.
Definition 2.10. A braided monoidal functor 𝐅∶ 𝖢 → 𝖣 between braided monoidal categories (𝖢, ⊗, 𝐼) and
(𝖣,⊠, 𝐽 ) is a monoidal functor that respects the braiding.

𝐅(𝐴)⊠ 𝐅(𝐵) 𝐅(𝐵)⊠ 𝐅(𝐴)

𝐅(𝐴⊗ 𝐵) 𝐅(𝐵 ⊗𝐴)

𝜎𝐅

𝜇 𝜇
𝐅(𝜎 )

A symmetric monoidal functor is a braided monoidal functor between symmetric monoidal categories. Lo-cally small symmetric monoidal categories and symmetric monoidal functors form a symmetric monoidalcategory 𝖲𝗒𝗆𝖬𝗈𝗇𝖢𝖺𝗍.
Coherence for symmetricmonoidal categories [Mac78, Section XI.1] ensures that all well-typed equationsbetween morphisms that have the same underlying permutation and are constructed only from 𝛼, 𝜆, 𝜌, 𝜎
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and the categorical and monoidal structure hold. The strictification 𝖲 of a symmetric monoidal category 𝖢 isalso symmetric and the symmetry on 𝖲 is defined as

𝐴⊗ 𝐵 ≅ 𝐇(𝐀(𝐴⊗ 𝐵))
𝐇𝜇−1

→ 𝐇(𝐀(𝐴)⊗ 𝐀(𝐵))
𝐇𝜎𝐀
→ 𝐇(𝐀(𝐵)⊗ 𝐀(𝐴))

𝐇𝜇
→ 𝐇(𝐀(𝐵 ⊗𝐴)) ≅ 𝐵 ⊗𝐴 .

Given a monoidal signature Σ, a string diagram with symmetries over that signature is a string diagramover Σwhere wires are allowed to be permuted. String diagrams with symmetries are a convenient and for-mal syntax for symmetric monoidal categories. More precisely, there is an adjunction between the category
𝖬𝗈𝗇𝖲𝗂𝗀 of monoidal signatures and the category 𝖲𝗒𝗆𝖬𝗈𝗇𝖢𝖺𝗍 of symmetric monoidal categories, where thefree symmetric monoidal category on a monoidal signature Σ is given by string diagrams with symmetriesover Σ [JS91, Theorem 2.3].
Theorem 2.11 ([JS91]). String diagrams with symmetries on a monoidal signature Σ form a symmetric strictmonoidal category and, in fact, the free symmetric strict monoidal category on Σ.
Props and finitely presented props

When a process theory only has one resource or there is no interest in recording the distinction betweenthe resources, the only relevant information about the inputs and outputs of processes is their number.Props [Mac65] provide an algebra for these “untyped” process theories. They are symmetric strict monoidalcategories where the objects are natural numbers and morphisms 𝑛→ 𝑚 represent processes with 𝑛 inputsand 𝑚 outputs.
Definition 2.12. A prop is a symmetric strict monoidal category whose objects are natural numbers, themonoidal product on them is addition and monoidal unit is 0.
Example 2.13. The skeleton of the category 𝖥𝗂𝗇𝖲𝖾𝗍 of finite sets and functions is a prop.
Definition 2.14. A homomorphismof props is an identity-on-objects symmetric strictmonoidal functor. Propsand their homomorphisms form a category 𝖯𝗋𝗈𝗉 that is a subcategory of 𝖲𝗒𝗆𝖬𝗈𝗇𝖢𝖺𝗍.

Some props can be presented by a finite set of generators because the adjunction between monoidalsignatures and symmetricmonoidal categories restricts to an adjunction between the category of one-sortedmonoidal signatures 𝟣𝖬𝗈𝗇𝖲𝗂𝗀 and the category 𝖯𝗋𝗈𝗉 of props. As a consequence, the morphisms of freeprops are one-sorted string diagrams with symmetries.Some theories impose equations on their processes. For example, multiplying by the neutral elementneeds to return the input as it is, so the theory of commutative monoids, in Figure 2.1, is presented by twogenerators, themultiplication ∶ 2 → 1 and the unit ∶ 0 → 1, subject to equations that ensure unitality,associativity and commutativity. Formally, this prop is a coequaliser: if we indicate with𝖬0 the free prop onthe generators { , }, with 𝖤 the free prop on three generators {𝑢∶ 1 → 1, 𝑎∶ 3 → 1, 𝑐 ∶ 2 → 1}, andwith 𝐥, 𝐫 ∶ 𝖤 → 𝖬0 the prop morphisms that point to the left- and right-hand sides of the three equations inFigure 2.1,
𝐥(𝑢)∶= 𝐫(𝑢)∶=

𝐥(𝑎)∶= 𝐫(𝑎)∶=

𝐥(𝑐)∶= 𝐫(𝑐)∶=



12 CHAPTER 2. BACKGROUND
the prop that gives the theory of commutative monoids𝖬 is the coequaliser of 𝐥 and 𝐫 in 𝖯𝗋𝗈𝗉:

𝖤
𝐥,𝐫
⇉ 𝖬0

𝐪
→ 𝖬 .

Example 2.15 ([Lac04]). The skeleton of the category 𝖥𝗂𝗇𝖲𝖾𝗍 of finite sets and functions is presented by acommutative monoid (Figure 2.1).

= = =

Figure 2.1: Generators and equations for a monoid.
Any prop 𝖲 contains the initial prop 𝖯𝟢 of permutations as subprop. This determines two propmorphisms

𝐥∶ 𝖯𝟢⊗𝖲 → 𝖲 and 𝐫 ∶ 𝖲⊗𝖯𝟢 → 𝖲 by pre- and post-composition because 𝖯𝟢 ≅ 𝖯𝟢
𝗈𝗉. The composition 𝖲⊗𝖯𝟢

𝖳of two props 𝖲 and 𝖳 is the coequaliser of 𝟙𝖲 ⊗ 𝐥 and 𝐫 ⊗ 𝟙𝖳.
𝖲⊗ 𝖯𝟢 ⊗ 𝖳

𝟙⊗𝐥,𝐫⊗𝟙
⇉ 𝖲⊗ 𝖳 → 𝖲⊗𝖯𝟢

𝖳

Composite props are characterised by factorisations of their morphisms. This result will be useful to showthe syntactic presentations of the props in Section 4.3.
Theorem 2.16 ([Lac04, Theorem 4.6]). Let 𝖱, 𝖲 and𝖳 be props with propmorphisms 𝜄𝖲 ∶ 𝖲 → 𝖱 and 𝜄𝖳 ∶ 𝖳 →
𝖱. Suppose that any morphism 𝑟∶ 𝑚 → 𝑛 in 𝖱 can be written as a composition 𝑟 = 𝜄𝖲(𝑠) # 𝜄𝖳(𝑡) for some
𝑠∶ 𝑚 → 𝑝 in 𝖲 and some 𝑡∶ 𝑝 → 𝑛 in 𝖳, uniquely up to permutations 𝜎 ∶ 𝑝 → 𝑝. Then, 𝖱 is the composite of
𝖲 and 𝖳 via a distributive law 𝜆∶ 𝖳⊗𝖯𝟢

𝖲 → 𝖲⊗𝖯𝟢
𝖳 that associates to a pair (𝑡 ∣ 𝑠) the pair (𝑠̂ ∣ 𝑡), where

𝜄𝖲(𝑠̂) # 𝜄𝖳(𝑡) is the unique factorisation of 𝜄𝖳(𝑡) # 𝜄𝖲(𝑠).
As explained in detail in Zanasi’s PhD thesis [Zan15, Proposition 2.27], when composing finitely presentedprops, the distributive law 𝜆 gives the additional equations that determine the composite theory: for eachpair (𝑡 ∣ 𝑠) in 𝖳⊗𝖯𝟢

𝖲, we add the equation 𝜄𝖳(𝑡) # 𝜄𝖲(𝑠) = 𝜄𝖲(𝑠̂) # 𝜄𝖳(𝑡). In other words, the composed prop
𝖲⊗𝖯𝟢

𝖳 is the coequaliser
𝖳⊗𝖯𝟢

𝖲
𝐥,𝐫
⇉ 𝖲 + 𝖳 ⤏ 𝖲⊗𝖯𝟢

𝖳

of the prop morphisms 𝐥 and 𝐫 defined by
𝐥(𝑡 ∣ 𝑠)∶= 𝜄𝖳(𝑡) # 𝜄𝖲(𝑠) and 𝐫(𝑡 ∣ 𝑠)∶= 𝜄𝖲(𝑠̂) # 𝜄𝖳(𝑡) .

Coproducts of props are particular cases of prop compositions where the distributive law does not addany extra equation: the set of equations of the coproduct of two props is the disjoint union of the sets ofequations of the components.
Proposition 2.17 ([Zan15, Proposition 2.11]). Let 𝖯1 and 𝖯2 be two props presented by generators and equa-tions (Σ1, 𝐸1) and (Σ2, 𝐸2). Then, their coproduct 𝖯1+𝖯2 is presented by the disjoint union of the generatorsand equations of 𝖯1 and 𝖯2, (Σ1 ⊔ Σ2, 𝐸1 ⊔ 𝐸2).
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2.2 Graph complexity measures
Several important applications of model checking reduce to deciding whether a formula 𝜙 is true in a graphor, more generally, in a relational structure 𝐺.

𝐺 ⊧ 𝜙

This problem is hard in general, even when the formula 𝜙 is fixed. For example, for monadic second orderlogic and every level Σ𝑃𝑖 of the polynomial hierarchy, there are formulae and classes of structures that make
themodel checking problem complete for Σ𝑃𝑖 [MP96]. However, when the input graph is structurally simple,monadic second order formulae can be checked efficiently.The structural complexity of graphs may be measured in different ways and different measures may de-fine different classes of “simple” graphs. Tree width and clique width are some of themost famousmeasuresof this kind: classes of graphs with bounded clique width might not have bounded tree width. This sectionrecalls these graph complexity measures and two equivalent ones, while the next shows how they serve thedesign of efficient model checking algorithms.All these graph widths rely on a corresponding notion of decomposition that indicates how graphs canbe split in smaller subgraphs according to some specific rules. There may be different decompositions of thesame graph and some of them may be more efficient than others. The width of a graph is the complexity ofthe most efficient decompositions.We recall the definitions of graphs, hypergraphs and relational structures.
Definition 2.18. An undirected (multi-)hypergraph𝐺 = (𝑉 ,𝐸, 𝖾𝗇𝖽𝗌) is determined by a function 𝖾𝗇𝖽𝗌∶ 𝐸 →
℘(𝑉 ) that assigns to each edge 𝑒 ∈ 𝐸 a set of vertices 𝖾𝗇𝖽𝗌(𝑒) ⊆ 𝑉 , the endpoints of 𝑒. An undirected(multi-)graph is a hypergraph where all the edges have at most two endpoints.

Note that, with this definition, edges in a hypergraph can have multiple endpoints or none, and therecan be parallel edges between the same vertices.Relational structures can be described as generalised hypergraphs where the vertices can be connectedby different “types” of edges. A relational signature fixes a set of types for the edges.
Definition 2.19. A relational signature is a set 𝜏 of relational symbols with a specified arity 𝛼∶ 𝜏 → ℕ.

We will write finite relational signatures as sets of pairs 𝜏 = {(𝑅1, 𝛼1),… , (𝑅𝑛, 𝛼𝑛)}, where 𝛼𝑖∶= 𝛼(𝑅𝑖).
Example 2.20. The relational signature for graphs contains a single relation of arity 2, 𝜏𝑔𝑟 = {(𝐸, 2)}, thatspecifies which vertices are connected by an edge, while that for hypergraphs contains a relation for eacharity 𝑛, 𝜏ℎ𝑦𝑝 = {(𝐸𝑛, 𝑛) ∶ 𝑛 ∈ ℕ}, that specify which sets of vertices are connected by a hyperedge.
Definition 2.21. For a relational signature 𝜏, a relational 𝜏-structure 𝐺 is a set 𝑉 of vertices with an 𝛼𝑅-aryrelation 𝑅𝐺 ⊆ 𝑉 𝛼𝑅 for each relational symbol 𝑅 of arity 𝛼𝑅 in the signature 𝜏.
Example 2.22. Graphs and hypergraphs can be encoded as relational structures for the signatures 𝜏𝑔𝑟 and
𝜏ℎ𝑦𝑝 defined in Example 2.20. In principle, relational symbols are ordered, but we can restrict to unorderedrelational structures.

While we will work with relational structures, we focus on hypergraphs for defining graph decomposi-tions. This distinction does not matter because tree and branch decompositions do not depend on the labelsof the relational structures or on the order in which the vertices are related by a relational symbol. In fact,the tree and branch widths of a relational structure coincide with the tree and branch widths of its underly-ing hypergraph. We fix some graph theoretic nomenclature. Trees and, in particular, subcubic trees are partof the data of tree and branch decompositions.
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Definition 2.23. Two distinct vertices 𝑣,𝑤 ∈ 𝑉 are neighbours in a hypergraph𝐺 if they are both endpointsof the same edge 𝑒 ∈ 𝐸, 𝑣,𝑤 ∈ 𝖾𝗇𝖽𝗌(𝑒). A path in 𝐺 is a sequence of vertices (𝑣1,… , 𝑣𝑛) with a sequenceof distinct hyperedges (𝑒1,… , 𝑒𝑛−1) such that 𝑣𝑖, 𝑣𝑖+1 ∈ 𝖾𝗇𝖽𝗌(𝑒𝑖) are both endpoints of the hyperedge 𝑒𝑖, forevery 𝑖 = 1,… , 𝑛 − 1. A cycle in 𝐺 is a path where the first vertex 𝑣1 coincides with the last one 𝑣𝑛.
Definition 2.24. A hypergraph is connected if there is a path between any two vertices. A tree is a connectedacyclic graph. A subcubic tree is a tree where every vertex has at most three neighbours. Vertices with oneneighbour are the leaves.
Tree width and branch width

Treewidth and branchwidth are equivalent graph complexitymeasureswhich, intuitively, measure how tree-like a graph is. This section recalls tree width and branch width for undirected multi-hypergraphs, which wewill simply call hypergraphs.
Tree width. Tree width, introduced by Robertson and Seymour [RS86, Section 1], measures the structuralcomplexity of relational structures by comparing their structure to trees. In fact, forests have tree width 2,while the family of cliques has unbounded tree width. Tree width is based on tree decompositions, whichspecify a way of aggregating the vertices of a graph in a tree shape. This information is recorded in a treewhose nodes are labelled by sets of vertices in the graph, called bags. The conditions on the bags ensurethat they respect the shape of the tree.
Definition 2.25. A tree decomposition of a hypergraph 𝐺 = (𝑉 ,𝐸) is a pair (𝑌 , 𝑡) of a tree 𝑌 and a function
𝑡∶ 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝑌 ) → ℘(𝑉 ) such that:1. Every vertex 𝑣 is in at least one of the bags 𝑡(𝑖),⋃𝑖∈𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝑌 ) 𝑡(𝑖) = 𝑉 .2. For every edge 𝑒 ∈ 𝐸 there is a node 𝑖 ∈ 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝑌 )whose bag 𝑡(𝑖) contains all the endpoints 𝖾𝗇𝖽𝗌(𝑒) of

𝑒.3. The subgraphs induced by the bags are glued in a tree shape, i.e. the intersection of any two bags 𝑡(𝑖)and 𝑡(𝑘) is contained in all the bags 𝑡(𝑗) corresponding to nodes 𝑗 ∈ 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝑌 ) that are on the pathbetween 𝑖 and 𝑘 on the tree 𝑌 .A tree decomposition of a relational 𝜏-structure is a tree decomposition of its underlying undirected hyper-graph.
Example 2.26. A tree decomposition of a hypergraph 𝐺 = (𝑉 ,𝐸) is a tree 𝑌 with a labelling 𝑡 of its nodes.Every node 𝑖 ∈ 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝑌 ) induces the subgraph 𝐺[𝑡(𝑖)] of 𝐺 on the bag 𝑡(𝑖). We draw the decomposition
(𝑌 , 𝑡) as a tree where the nodes are bubbles containing the subgraphs 𝐺[𝑡(𝑖)] of 𝐺 induced by the bags 𝑡(𝑖).

𝐺 = (𝑌 , 𝑡) =

The width of a tree decomposition (𝑌 , 𝑡) of a graph 𝐺 is the number of vertices in the biggest bag. Intu-itively, it is the maximum number of vertices that need to be “hidden” in a bag to obtain a tree shape fromthe graph. The cost of the decomposition in Example 2.26 is 3 as all the bags contain three vertices. Differentdecompositions can have different widths, but the tree width of a graph is the width of a minimal one.
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Definition 2.27. Given a tree decomposition (𝑌 , 𝑡) of a graph 𝐺, its width is the maximum cardinality of itsbags, 𝗐𝖽(𝑌 , 𝑡)∶= max𝑖∈𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝑌 ) |𝑡(𝑖)|. The tree width of 𝐺 is given by the min-max formula:

𝗍𝗐𝖽(𝐺)∶= min
(𝑌 ,𝑡)

𝗐𝖽(𝑌 , 𝑡).

Note that Robertson and Seymour subtract 1 from 𝗍𝗐𝖽(𝐺) so that trees have tree width 1. To minimisebureaucratic overhead, we ignore this and, according to this convention, trees and forests have tree width2, while the clique on 𝑛 vertices has tree width n.
Remark 2.28. The Gaifman graph of a hypergraph is the graph obtained by replacing every hyperedge with
𝑛 endpoints by an 𝑛-clique. The tree width of a hypergraph is the same as the tree width of its Gaifman graphbecause the tree width of an 𝑛-clique and the tree width of a hypergraph on 𝑛 vertices that are all connectedby a single edge are both 𝑛.
Branch width. Branch width was introduced by Robertson and Seymour as alternative to tree width [RS91,Section 4]. While a tree decomposition splits a graph into subgraphs, a branch decomposition imposes thatthese subgraphs contain only one edge. Intuitively, this should not matter. In fact, the corresponding com-plexity measure, branch width, is equivalent to tree width.
Definition 2.29. The hyperedge size of a relational 𝜏-structure 𝐺 is the maximum arity of the relations withnon-empty interpretation: 𝛾(𝐺)∶= max𝑅𝐺≠∅ 𝛼𝑅. The hyperedge size of a relational signature 𝜏 is the maxi-mum arity of its symbols: 𝛾(𝜏)∶= max𝑅∈𝜏 𝛼𝑅.
Theorem 2.30 ([RS91, Theorem 5.1]). Branch width is equivalent to tree width. More precisely, for a hyper-graph 𝐺,

max{𝖻𝗐𝖽(𝐺), 𝛾(𝐺)} ≤ 𝗍𝗐𝖽(𝐺) ≤ max{3
2
𝖻𝗐𝖽(𝐺), 𝛾(𝐺), 1} .

A branch decomposition is a tree where the leaves are in bijection with the edges of the graph. If thistree had a root, a branch decomposition would be a recipe for successively splitting the graph in two partsalong its vertices until both parts contain only one edge.
Definition 2.31. A branch decomposition of a hypergraph 𝐺 = (𝑉 ,𝐸) is a pair (𝑌 , 𝑏) of a subcubic tree 𝑌and a bijection 𝑏∶ 𝗅𝖾𝖺𝗏𝖾𝗌(𝑌 ) ≅ 𝐸 between the leaves of 𝑌 and the edges of 𝐺. A branch decomposition ofa relational 𝜏-structure is a branch decomposition of its underlying hypergraph.
Example 2.32. If we choose an edge of 𝑌 to be the starting point of the decomposition, we can extend thelabelling to the internal vertices of the tree by labelling them with the gluing of the labels of their children.In this way, a branch decomposition is a way of splitting a graph by cutting along its vertices.

𝐺 = (𝑌 , 𝑏) =
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Each splitting of the graph cuts along some vertices, as shown in Example 2.32 and each edge 𝑒 in thetree 𝑌 determines a splitting of the graph. More precisely, it determines a 2-partition of the leaves of 𝑌 ,which, through 𝑏, determines a 2-partition {𝐴𝑒, 𝐵𝑒} of the edges of𝐺. This corresponds to a splitting of thegraph 𝐺 into two subgraphs 𝐺1 and 𝐺2. Intuitively, the order of an edge 𝑒 is the number of vertices that 𝐺1and 𝐺2 have in common as subgraphs of 𝐺. Given the partition {𝐴𝑒, 𝐵𝑒} of the edges of 𝐺, we say that avertex 𝑣 of 𝐺 separates 𝐴𝑒 and 𝐵𝑒 whenever there are an edge in 𝑥 ∈ 𝐴𝑒 and an edge in 𝑦 ∈ 𝐵𝑒 that areboth adjacent to 𝑣: 𝑣 ∈ 𝖾𝗇𝖽𝗌(𝐴𝑒) ∩ 𝖾𝗇𝖽𝗌(𝐵𝑒).

Definition 2.33. The order of an edge 𝑒 in a branch decomposition (𝑌 , 𝑏) of a hypergraph 𝐺 is the numberof vertices that separate 𝐴𝑒 and 𝐵𝑒: 𝗈𝗋𝖽(𝑒)∶= |𝖾𝗇𝖽𝗌(𝐴𝑒) ∩ 𝖾𝗇𝖽𝗌(𝐵𝑒)|.
In Example 2.32, there is only one vertex separating the first two subgraphs of the decomposition. Thismeans that the corresponding edge in the decomposition tree has order 1. The width of a decompositionis the maximum number of vertices in all cuts. The branch width of a graph is the width of a most efficientdecomposition.

Definition 2.34. The width of a branch decomposition (𝑌 , 𝑏) of a hypergraph 𝐺 = (𝑉 ,𝐸) is the maximumorder of its edges, 𝗐𝖽(𝑌 , 𝑏)∶= max𝑒∈𝖾𝖽𝗀𝖾𝗌(𝑌 ) 𝗈𝗋𝖽(𝑒). The branch width of a hypergraph 𝐺 is given by themin-max formula:
𝖻𝗐𝖽(𝐺)∶= min

(𝑌 ,𝑏)
𝗐𝖽(𝑌 , 𝑏) .

Clique width and rank width

Clique width and rank width are equivalent graph complexity measures that are “stronger” than tree widthand branch width: every graph of bounded tree width has bounded clique width but vice-versa is not true.This section recalls clique width and rank width for undirected multi-graphs.
Clique width. In the same way that trees are simple according to tree width, cliques, and cographs moregenerally, are simple according to clique width. Clique decompositions, introduced by Courcelle, Engelfrietand Rozenberg [CER93; CO00], have a more algebraic flavour compared to the combinatorial definitions oftree and branch decompositions. They are terms formed by some operations and constants that specifya graph where the vertices have labels. The operations can rename the labels, create edges and take thedisjoint union of graphs. The constants create a single 1-labelled vertex or the empty graph.
Definition 2.35. An 𝑛-labelled graph (𝐺, 𝑙) is a graph𝐺 = (𝐸, 𝑉 )with a labelling function 𝑙∶ 𝑉 → {1,… , 𝑛}.• The generating graphs are the 1-labelled empty graph, ∅1, and the graph 𝗏1with a single 1-labelled vertex.• The renaming of labels 𝖱𝖾𝗇𝖺𝗆𝖾𝑛𝑖→𝑗 of an 𝑛-labelled graph (𝐺, 𝑙) is the graph (𝐺, 𝑙′), where the verticeswith label 𝑖 now have label 𝑗: 𝑙′(𝑣) = 𝑙(𝑣) if 𝑙(𝑣) ≠ 𝑖 and 𝑙′(𝑣) = 𝑗 if 𝑙(𝑣) = 𝑖.• The edge creation 𝖤𝖽𝗀𝖾𝑛𝑖,𝑗 of an 𝑛-labelled graph (𝐺, 𝑙) is the 𝑛-labelled graph (𝐺′, 𝑙) with extra edgesbetween the vertices with label 𝑖 and those with label 𝑗.• The disjoint union + of an 𝑛-labelled graph (𝐺, 𝑙) and an 𝑛′-labelled graph (𝐺′, 𝑙′) is the 𝑛 + 𝑛′-labelledgraph (𝐺 + 𝐺′, 𝑙 + 𝑙′) given by the disjoint union of graphs and their labelling functions. Note that thelabelling function 𝑙 + 𝑙′ reindexes the labels of 𝐺′: 𝑙 + 𝑙′(𝑣′)∶= 𝑛 + 𝑙′(𝑣) for a vertex 𝑣′ of 𝐺′, while

𝑙 + 𝑙′(𝑣)∶= 𝑙(𝑣) for a vertex 𝑣 of 𝐺.
Our treatment of labels slightly differs from the one in [CO00] but equivalent to it up to renaming of la-bels, and it is closer to the categorical algebra that we will introduce in Section 4.3. To be precise, we shoulddefine separately the syntactic operations and their semantics, but, for brevity, we presented them together.
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In Section 4.3, we will derive these operations from compositions and monoidal product in a monoidal cate-gory where graphs are morphisms. There, the difference between the syntactic operations and the semanticones is clear: they belong to different, but equivalent, monoidal categories.A clique decomposition is a syntax tree where the internal nodes are the operations and the leaves arethe constants in Definition 2.35.
Definition 2.36. A clique decomposition 𝑡 ∈ 𝑇𝐺 of a graph 𝐺 is a term constructed with the operations andconstants in Definition 2.35.

𝑡 ∶∶= (𝐺) if 𝐺 = ∅1 or 𝐺 = 𝗏1
∣ 𝖱𝖾𝗇𝖺𝗆𝖾𝑛𝑖→𝑗(𝑡

′) if 𝐺 = 𝖱𝖾𝗇𝖺𝗆𝖾𝑛𝑖→𝑗(𝐺
′) and 𝑡′ ∈ 𝑇𝐺′

∣ 𝖤𝖽𝗀𝖾𝑛𝑖,𝑗(𝑡′) if 𝐺 = 𝖤𝖽𝗀𝖾𝑛𝑖,𝑗(𝐺′) and 𝑡′ ∈ 𝑇𝐺′

∣ 𝑡1 + 𝑡2 if 𝐺 = 𝐺1 + 𝐺2 and 𝑡𝑖 ∈ 𝑇𝐺𝑖

Example 2.37. The 1-labelled 4-clique is expressed by the term
𝖱𝖾𝗇𝖺𝗆𝖾22→1𝖤𝖽𝗀𝖾

2
1,2(𝖱𝖾𝗇𝖺𝗆𝖾33→2𝖤𝖽𝗀𝖾

3
2,3(𝖱𝖾𝗇𝖺𝗆𝖾44→3𝖤𝖽𝗀𝖾

4
3,4(𝗏1 + 𝗏1 + 𝗏1 + 𝗏1))) ,

that creates 4 vertices and progressively adds edges between them, or by the (simpler) term
𝖱𝖾𝗇𝖺𝗆𝖾22→1𝖤𝖽𝗀𝖾

2
1,2(𝗏1 + 𝖱𝖾𝗇𝖺𝗆𝖾22→1𝖤𝖽𝗀𝖾

2
1,2(𝗏1 + 𝖱𝖾𝗇𝖺𝗆𝖾22→1𝖤𝖽𝗀𝖾

2
1,2(𝗏1 + 𝗏1))) ,

that creates one vertex at a time and adds the edges between each new vertex and all the previous ones.
Assigning a cost to each operation inductively determines a cost for decompositions. The cost of anoperation is, intuitively, the number of labels that it needs to handle.

Definition 2.38. We assign a cost to each operation, 𝗐(𝖱𝖾𝗇𝖺𝗆𝖾𝑛𝑖→𝑗)∶= 𝑛, 𝗐(𝖤𝖽𝗀𝖾𝑛𝑖,𝑗)∶= 𝑛 and 𝗐(+)∶= 0.The width of a clique decomposition 𝑡 of 𝐺 is the maximum cost of its operations.
𝗐𝖽(𝑡) ∶= |𝑉𝐺| if 𝑡 = (𝐺)

∣ max{𝑛,𝗐𝖽(𝑡′)} if 𝑡 = 𝖤𝖽𝗀𝖾𝑛𝑖,𝑗(𝑡′) or 𝑡 = 𝖱𝖾𝗇𝖺𝗆𝖾𝑛𝑖→𝑗(𝑡
′)

∣ max{𝗐𝖽(𝑡1),𝗐𝖽(𝑡2)} if 𝑡 = 𝑡1 + 𝑡2

The clique width of a graph 𝐺 is the width of a best clique decomposition:
𝖼𝗅𝗐𝖽(𝐺)∶= min

𝑡∈𝑇𝐺
𝗐𝖽(𝑡) .

As with the other graph widths, the clique width of a graph is the cost of a cheapest decomposition. Thefirst term in Example 2.37 costs 4, while the second costs 2 and gives a cheapest decomposition. In fact, ingeneral, cliques (and cographs) have clique width 2, trees have clique width at most 3 [CO00], while 𝑛-gridshave clique width 𝑛 + 1 [GR00].
Rank width. Rank width and rank decompositions were introduced by Oum and Seymour to approximateclique width [Oum05; OS06]. In fact, the two measures are equivalent.
Theorem2.39 ([OS06, Proposition 6.3]). Rankwidth is equivalent to cliquewidth. More precisely, for a graph
𝐺,

𝗋𝗐𝖽(𝐺) ≤ 𝖼𝗅𝗐𝖽(𝐺) ≤ 2𝗋𝗐𝖽(𝐺)+1 − 1 .
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Rank decompositions are similar in spirit to branch decompositions, but, instead of partitioning the edgesof a graph, they partition their vertices. A rank decomposition of a graph 𝐺 = (𝑉 ,𝐸) is a tree where theleaves are in bijection with the vertices 𝑉 of the graph. If this tree had a root, a rank decomposition wouldbe a recipe for successively splitting the graph in two parts along its edges until both parts contain only onevertex.

Definition 2.40. A rank decomposition of a graph 𝐺 is a pair (𝑌 , 𝑟) of a subcubic tree 𝑌 and a bijection
𝑟∶ 𝗅𝖾𝖺𝗏𝖾𝗌(𝑌 ) → 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝐺).
Example 2.41. While a branch decomposition cuts a graph along its vertices (Example 2.32), a rank decom-position is, intuitively, a recipe for decomposing a graph into its single-vertex subgraphs by cutting along itsedges.

The cost of each cut is given by the rank of the adjacency matrix that represents it. The matrix below corre-sponds to the cut in the decomposition above indicated by the arrow.

𝗋𝗄
( 1 1
1 1

)

= 1

Each edge 𝑏 in the tree 𝑌 determines a splitting of the graph: it determines a two partition of the leavesof 𝑌 , which, through 𝑟, determines a two partition {𝐴𝑏, 𝐵𝑏} of the vertices of 𝐺. This corresponds to asplitting of the graph 𝐺 into two subgraphs 𝐺1 and 𝐺2. Intuitively, the order of an edge 𝑏 is the amount ofinformation required to recover 𝐺 by joining 𝐺1 and 𝐺2. Given the partition {𝐴𝑏, 𝐵𝑏} of the vertices of 𝐺,we can record the edges in 𝐺 beween 𝐴𝑏 and 𝐵𝑏 in a matrix 𝑋𝑏. This means that, if 𝑣𝑖 ∈ 𝐴𝑏 and 𝑣𝑗 ∈ 𝐵𝑏,the entry (𝑖, 𝑗) of the matrix𝑋𝑏 is the number of edges between 𝑣𝑖 and 𝑣𝑗 . The order of an edge 𝑏 is the rankof its corresponding matrix𝑋𝑏.
Definition 2.42. The order of 𝑏 is the rank of the matrix𝑋𝑏 of the cut corresponding to 𝑏: 𝗈𝗋𝖽(𝑏)∶= 𝗋𝗄(𝑋𝑏).

The cut shown in Example 2.41 corresponds to the edge indicated by the arrow. The order of this edge is
1, which is the rank of thematrix recording the cut. The width of a decomposition is themaximal edge order,and the rank width is the width of the most efficient decomposition. The complete graph on 4 vertices hasrank width 1 with minimal decomposition shown in Example 2.41.
Definition 2.43. The width of a rank decomposition (𝑌 , 𝑟) of a graph 𝐺 is the maximum order of its edges,
𝗐𝖽(𝑌 , 𝑟)∶= max𝑏∈𝖾𝖽𝗀𝖾𝗌(𝑌 ) 𝗈𝗋𝖽(𝑏). The rank width of a graph 𝐺 is given by the min-max formula:

𝗋𝗐𝖽(𝐺)∶= min
(𝑌 ,𝑟)

𝗐𝖽(𝑌 , 𝑟) .

The decomposition in Example 2.41 shows that the 4-clique has rank width 1. This holds for 𝑛-cliques ingeneral and they all have rank width 1. As for clique width, the class of grids have unbounded rank widthbecause the 𝑛-grid has rank width 𝑛 − 1 [Jel10].
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2.3 Divide-and-conquer algorithms
Divide-and-conquer algorithms rely on the possibility of splitting, or decomposing, their inputs into smallerparts according to a given set of operations. The decompositions defined in this section resemble clique de-compositions in that they are terms expressing a certain algebraic structure. The advantage of having a termexpressing an input structure is that they give a divide-and-conquer algorithm: a “brute-force” algorithmruns on the generating structures to compute partial solutions and these partial solutions are combined ac-cording to the decomposition structure. When combining partial solutions is computationally easy and theterm expression for the input structure is simple, the divide-and-conquer algorithm is efficient. Problemssolved by such divide-and-conquer algorithms are fixed-parameter tractable: they can be quickly solved ifthe term that expresses the input structure has bounded complexity.This section presents a general technique [CM02; Mak04] for finding divide-and-conquer algorithms forchecking formulae of a chosen logic on relational structures and how to apply it to the case of monadicsecond order logic to obtain Courcelle’s theorems for tree width [Cou92a] and clique width [CO00].
Checking formulae on relational structures

The problem of checking formulae of a given logic on relational structures is fixed-parameter tractable undertwo conditions.1. There is a finite set of generating structures and, for each 𝑘 ∈ ℕ, a finite set of operations𝑘 to expressrelational structures of width at most 𝑘.2. A preservation theorem holds for the chosen operations.Given some operations and some generating structures, the well-formed terms express relational structures(Definitions 2.47 and 2.48). With Requirement 1, we define the width of a relational structure, which isthe fixed parameter for the divide-and-conquer algorithm (Definition 2.49). Requirement 2, on the otherhand, ensures that the theory of a composite structure can be computed from the theory of the componentstructures as in Definition 2.46. Assembling the theories of the components amounts to looking up theentries of a table (Definition 2.51) and evaluating a boolean function (Definition 2.45). These tasks do notdepend on the relational structure but only on the given logic and can be restricted to check one givenformula on the composite structure instead of computing its whole theory. The computation of the look-uptable depends on the width of terms and on the initial formula.Under these conditions running the divide-and-conquer algorithm for a fixed formula depends linearly onthe size of the input term but more than exponentially on the width parameter, and the problem of checkinga formula on a term for a relational structure is fixed-parameter tractable with parameter the width of inputterms (Theorem 2.52).For the rest of this section, we fix a logic, and consider the class of formulae(𝜏) of all those sentencesthat can be written in  using the relational symbols in 𝜏. We will write (𝜏, 𝑥) for the set of formulae thatcan be written in  using the relational symbols in 𝜏 and with free variables in 𝑥. The theory of a relationalstructure 𝐺 in a logic  is the set of sentences in (𝜏) that are true in 𝐺.
Definition 2.44. For a relational signature 𝜏, the theory of a set of relational 𝜏-structures in a logic is theset of sentences in the logic (𝜏) that is true in every 𝜏-structure 𝐺 ∈ : 𝖳𝗁(𝜏)()∶= {𝜙 ∈ (𝜏) ∶ ∀𝐺 ∈
 𝐺 ⊧ 𝜙}. When the set contains only one structure, we write 𝖳𝗁(𝜏)(𝐺)∶= 𝖳𝗁(𝜏)({𝐺}).

Given an operation 𝑜 and a formula, it is sometimes possible to compute a sequence of formulae, calledtheir reduction sequence, whose truth values on components 𝐺1,… , 𝐺𝑛 determine the truth value of theoriginal formula on the composite structure 𝑜(𝐺1,… , 𝐺𝑛).
Definition 2.45. For an 𝑛-ary operation 𝑜 on 𝜏-structures, an 𝑜-reduction sequence for a formula 𝜙 ∈ (𝜏)is two pieces of data.
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• A list (𝜓 𝑗𝑖 ∣ 𝑖 = 1,… , 𝑚 , 𝑗 = 1,… , 𝑛) of formulae 𝜓 𝑗𝑖 ∈ (𝜏).
• A boolean function 𝑏∶ 𝟚𝑚⋅𝑛 → 𝟚.For all 𝜏-structures 𝐺1,… , 𝐺𝑛, the values of the formulae 𝜓 𝑗𝑖 on 𝐺1,… , 𝐺𝑛 and the function 𝑏 need todetermine the value of 𝜙 on 𝑜(𝐺1,… , 𝐺𝑛).

𝑜(𝐺1,… , 𝐺𝑛) ⊧ 𝜙 iff 𝑏((𝐺𝑗 ⊧ 𝜓
𝑗
𝑖 )𝑖,𝑗) = 1

When the formula 𝜙 and the operation 𝑜 need to be explicit, we will denote the list of formulae 𝜓 𝑗𝑖 by
𝖱𝖾𝖽𝖲𝖾𝗊(𝜙, 𝑜) and the boolean function 𝑏 by 𝖱𝖾𝖽𝖡𝗈𝗈𝗅(𝜙, 𝑜).

The operations that always admit reduction sequences are effectively smooth [Mak04, Definition 4.1].For these operations, the theory of a composite structure only depends on the theories of its components.This is a fundamental requirement for the correctness of divide-and-conquer algorithms and corresponds toRequirement 2.
Definition 2.46. An 𝑛-ary operation 𝑜 is -smooth if the theory 𝖳𝗁(𝜏)(𝑜(𝐺1,… , 𝐺𝑛)) of the 𝜏-structure
𝑜(𝐺1,… , 𝐺𝑛) in(𝜏) depends only on 𝖳𝗁(𝜏)(𝐺1), . . . ,𝖳𝗁(𝜏)(𝐺𝑛), for all 𝜏-structures𝐺1,… , 𝐺𝑛. The opera-tion 𝑜 is effectively -smooth if, for every formula 𝜙 ∈ (𝜏), there is an algorithm to compute the reductionsequence 𝖱𝖾𝖽𝖲𝖾𝗊(𝜙, 𝑜) and its associated formula 𝖱𝖾𝖽𝖡𝗈𝗈𝗅(𝜙, 𝑜).

Preservation theorems are the results that show that an operation is -smooth. For first order logic,there are preservation theorems with products and sums of relational structures [Mos52; FV59], while formonadic second order logic, they only hold for sum-like operations [FV59; Fef57; CK09]. Theorems 2.59and 2.60 in the next section recall these results for the operations in Definitions 2.53 and 2.56.A finite set of relational structures and a set of operations generate inductively a class of relational struc-tures. Inductive classes are classes of relational structures obtained in this waywith a finite set of smooth op-erations [Mak04, Definition 4.3]. The sets of operations defined in the next section (Definitions 2.53 and 2.56)are infinite, but they are indexed by natural numbers and finite for every fixed index. For every natural num-ber 𝑘 ∈ ℕ, there is a class of structures generated by the operations with index 𝑘. These are the structuresof width at most 𝑘. Classes of relational structure of bounded width are inductive.
Definition 2.47. A class of 𝜏-structures is -inductive if there are• a finite generating set0 ⊆  of 𝜏-structures and• a finite set  of -smooth operationssuch that  =

⋃

𝑛∈ℕ𝑛, where 𝑛+1∶= {𝐺 𝜏-structure ∶ ∃𝐺1,… , 𝐺𝑘 ∈ 𝑛 ∃𝑜 ∈  𝐺 = 𝑜(𝐺1,… , 𝐺𝑘)}is the set of all the 𝜏-structures 𝐴 that are obtained by applying an operation 𝑜 ∈  to some 𝜏-structures
𝐺1,… , 𝐺𝑘 ∈ 𝑛. The class is effectively -inductive if all the operations in  are effectively -smooth.

The terms that specify relational structures in terms of operations and generating structures are decom-positions.
Definition 2.48. For an -inductive class  of 𝜏-structures, an algebraic decomposition of a 𝜏-structure
𝐺 ∈  is a term 𝑡 ∈ 𝑇𝐺 constructed from applications of operations 𝑜 ∈  to 𝜏-structures 𝐺0 in thegenerating set0:

𝑡 ∶∶= (𝐺) if 𝐺 ∈ 0 ,
∣ 𝑜 (𝑡1,… , 𝑡𝑘) if 𝑡𝑖 ∈ 𝑇𝐺𝑖 and 𝐺 = 𝑜(𝐺1,… , 𝐺𝑘) with 𝑜 ∈  of arity 𝑘 .

If a decomposition combines the structures𝐺1,…𝐺𝑙 with operations 𝑜1,… , 𝑜𝑛, its width is given by themaximum cost,max𝑖,𝑗{𝗐(𝑜𝑖), |𝑉𝑗|}, where we fixed costs 𝗐(𝑜𝑖) for operations 𝑜𝑖.
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Definition 2.49. Aweight function for an-inductive class of 𝜏-structures is a function𝗐∶  → ℕ. A choiceof weight function determines a width for algebraic decompositions:

𝗐𝖽(𝑡) ∶= |𝑉𝐺| if 𝑡 = (𝐺) ,
∣ max{𝗐(𝑜),𝗐𝖽(𝑡1),… ,𝗐𝖽(𝑡𝑘)} if 𝑡 = 𝑜(𝑡1,… , 𝑡𝑘) .

The size of a decomposition is the number of its leaves:
𝗌𝗂𝗓𝖾(𝑡) ∶= 1 if 𝑡 = (𝐺) ,

∣ 𝗌𝗂𝗓𝖾(𝑡1) +⋯ + 𝗌𝗂𝗓𝖾(𝑡𝑘) if 𝑡 = 𝑜(𝑡1,… , 𝑡𝑘) .

The algebraic width of a 𝜏-structure 𝐺 is the width of a best decomposition:
𝖺𝗐𝖽(𝐺)∶= min

𝑡∈𝑇𝐺
𝗐𝖽(𝑡) .

For the sets of operations defined in the next section, Theorems 2.55 and 2.58 characterise the bounded-width classes of relational structures. The size of the decompositions corresponding to these operations isbounded by the number of hyperedges or vertices in the relational structure.Given a set of effectively smooth operations and a formula, we can compute the set of all reductionsequences generated by the formula and arrange them in a look-up table. The general divide-and-conquerstrategy uses this look-up table for combining the partial solutions.
Definition 2.50. The -reduction set 𝖱𝖾𝖽(𝜙,) of a formula 𝜙 ∈ (𝜏, 𝑥) with respect to a finite set  of
-smooth operations is the smallest set of formulas in (𝜏, 𝑥) that• contains 𝜙 and• is closed under taking 𝑜-reduction sequences 𝖱𝖾𝖽𝖲𝖾𝗊(−, 𝑜), for all operations 𝑜 ∈ .
Definition 2.51. For a finite set  of effectively -smooth operations and a formula 𝜙 ∈ (𝜏), the look-uptable of 𝜙 and  is a list

𝖫𝗈𝗈𝗄(𝜙,)∶= (𝜓, 𝑜,𝖱𝖾𝖽𝖲𝖾𝗊(𝜓, 𝑜),𝖱𝖾𝖽𝖡𝗈𝗈𝗅(𝜓, 𝑜) ∣ 𝜓 ∈ 𝖱𝖾𝖽(𝜙,), 𝑜 ∈ ) .

When the look-up table 𝖫𝗈𝗈𝗄(𝜙,) is finite and the operations are effectively smooth, the table can becomputed in finite time. Weassume that the logic always gives finite look-up tables, which is true formonadicsecond order logic [Mak04, Observation 6]. Look-up tables give a way of combining partial solutions andshowing fixed-parameter tractability of checking (𝜏)-formulae on relational structures [CM02]. The proofthat Makowsky presents [Mak04, Theorem 4.21] precomputes all the possible partial solutions, but thesecan also be computed as needed.
Theorem 2.52 ([CM02]). Fix a formula 𝜙 ∈ (𝜏) and an effectively -inductive class of 𝜏-structures withrespect to a finite set of effectively -smooth operations. Let𝐺 ∈  be a 𝜏-structure with a parse term 𝑑.Then, whether the formula 𝜙 holds in 𝐺, 𝐺 ⊧ 𝜙, can be decided in time linear in 𝗌𝗂𝗓𝖾(𝑑).
Proof. We precompute the look-up table 𝖫𝗈𝗈𝗄(𝜙,) in finite time and this computation does not depend onthe input structure but only on the fixed formula and operations. Using this look-up table, we run𝖢𝗁𝖾𝖼𝗄(𝑑, 𝜙)(Algorithm 1). This computes𝐺𝑖 ⊧ 𝜓 𝑗𝑖 for all the leaves𝐺𝑖 of the input decomposition 𝑑 and combines thesepartial solutions by looking up on the table 𝖫𝗈𝗈𝗄(𝜙,). Looking up the information in 𝖫𝗈𝗈𝗄(𝜙,) takesconstant time 𝑐0, while computing 𝐺𝑖 ⊧ 𝜓 𝑗𝑖 on a substructure 𝐺𝑖 of size 𝑛𝑖 takes time 𝑐(𝑛𝑖), for some more
than exponential function 𝑐 ∶ ℕ → ℕ. If the size of the decomposition is 𝑛 and the maximum size of thesubstructures 𝐺𝑖 is 𝑘, the computation takes (𝑐(𝑘) ⋅ 𝑛).
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Algorithm 1: 𝖢𝗁𝖾𝖼𝗄(𝑑, 𝜙)
Data: a term 𝑑 for a structure 𝐺 and a formula 𝜙
Result: whether the structure 𝐺 satisfies 𝜙
if 𝑑 = (𝐺) thencompute 𝑡∶= 𝐺 ⊧ 𝜙 by brute force
else if 𝑑 = 𝑜(𝑑1,… , 𝑑𝑛) for some 𝑜 ∈  then

look up the reduction sequence (𝜓 𝑗𝑖 )𝑗=1,…,𝑛
𝑖=1,…,𝑚∶= 𝖱𝖾𝖽𝖲𝖾𝗊(𝜙, 𝑜)

look up the function 𝑏∶= 𝖱𝖾𝖽𝖡𝗈𝗈𝗅(𝜙, 𝑜)
for 𝑖 = 1,… , 𝑚 and 𝑗 = 1,… , 𝑛 do

compute 𝑡𝑗𝑖 ∶= 𝖢𝗁𝖾𝖼𝗄(𝑑𝑖, 𝜓
𝑗
𝑖 )

end
compute 𝑡∶= 𝑏((𝑡𝑗𝑖 )𝑖,𝑗)return 𝑡

Monadic second order logic of graphs

Monadic second order (MSO) logic is the fragment of second order logic where quantification is only allowedon unary predicates, i.e. sets of variables. This section recalls Courcelle’s theorems for tree width and cliquewidth [Cou92a; CO00] in Corollaries 2.63 and 2.64. Their proof strategy relies on showing the assumptionsfor applying Theorem 2.52:
(1) Definitions 2.53 and 2.56 recall the decomposition algebras for tree width introduced by Bauderon andCourcelle [BC87; Cou90] and for rankwidth introducedbyCourcelle andKanté [CK09], and Theorems2.55and 2.58 recall that their MSO-inductive classes are those of bounded tree width [Cou92a] and rankwidth [CK07].(2) Theorems2.59 and2.60 recall the Feferman-Vaught-Mostowski [FV59; Fef57] and theCourcelle-Kanté [CK09]preservation theorems.
The operations for tree width and rank width join two structures by merging some of their parts. Structuresare given an additional piece of information to specify which parts are allowed to be merged with otherstructures. These are called constants for the tree width decomposition algebra and labels for the rankwidth decomposition algebra.
Definition 2.53. A relational 𝜏-structure with 𝑛 constants, for a natural number 𝑛 ∈ ℕ, is a pair (𝐺, 𝑐) of astructure 𝐺 together with a function 𝑐 ∶ {1,… , 𝑛} → 𝑉 .
• The generating structures are the empty structure with no constants, ∅, and, for every relational symbol
𝑅 ∈ 𝜏, the structure 𝖾𝑅 with 𝛼𝑅 vertices that are all related by 𝑅 and are all constants.• The disjoint union of relational structures (𝐺, 𝑐) and (𝐻, 𝑑)with𝑚 and 𝑛 constants is a relational structure
(𝐺 +𝐻, 𝑐 + 𝑑) with 𝑚+ 𝑛 constants and universe 𝐴+𝐵, where the relations are interpreted as disjointunions: 𝑅𝐺+𝐻 = 𝑅𝐺 ⊔ 𝑅𝐻 .• The redefinition of constants 𝖱𝖾𝗅𝖺𝖻𝑛𝑓 of a relational structure (𝐺, 𝑐) with 𝑛 constants with a function
𝑓 ∶ {1,… , 𝑚} → {1,… , 𝑛}, is the relational strcuture (𝐺, 𝑓𝑐) with 𝑚 constants.• The fusion of constants 𝑖 and 𝑗, with 0 < 𝑖 < 𝑗 ≤ 𝑛+1, on a relational structure (𝐺, 𝑐)with 𝑛+1 constantsgives a relational structure 𝖥𝗎𝗌𝖾𝑛𝑖,𝑗(𝐺, 𝑐) with 𝑛 constants where:
– The universe 𝑉 ∕𝑐(𝑖)=𝑐(𝑗) is the set 𝑉 quotiented by the equivalence relation 𝑐(𝑖) = 𝑐(𝑗);
– The interpretation 𝑅𝖥𝗎𝗌𝖾𝑛𝑖,𝑗 (𝐺) of the relation 𝑅 is the subset of 𝑉 ∕𝑐(𝑖)=𝑐(𝑗) that corresponds to the
subset 𝑅𝐺 quotiented by 𝑐(𝑖) = 𝑐(𝑗);



2.3. DIVIDE-AND-CONQUER ALGORITHMS 23
– The function for the constants 𝖥𝗎𝗌𝖾𝑛𝑖,𝑗𝑐 is the reindexing of the function 𝑐 as 𝖥𝗎𝗌𝖾𝑛𝑖,𝑗𝑐(𝑘) = 𝑐(𝑘) if
𝑘 < 𝑗 and 𝖥𝗎𝗌𝖾𝑛𝑖,𝑗𝑐(𝑘) = 𝑐(𝑘 + 1) if 𝑘 ≥ 𝑗.• The addition of constant 𝑖, 𝖵𝖾𝗋𝗍𝑛𝑖, on a relational structure (𝐺, 𝑐)with 𝑛 ≥ 𝑖−1 constants is the relationalstructure (𝐺 + {𝑣}, 𝑐′) with 𝑛 + 1 constants 𝑐′ ∶ 𝑛 + 1 → 𝑉 + {𝑣} defined as 𝑐′(𝑗) = 𝑐(𝑗) for 𝑗 < 𝑖,

𝑐′(𝑖) = 𝑣 and 𝑐′(𝑗) = 𝑐(𝑗 − 1) for 𝑗 ≥ 𝑖.We assign a cost to these operations, 𝗐(+)∶= 0, 𝗐(𝖱𝖾𝗅𝖺𝖻𝑛𝑓 )∶= 𝑛, 𝗐(𝖥𝗎𝗌𝖾𝑛𝑖,𝑗)∶= 𝑛 and 𝗐(𝖵𝖾𝗋𝗍𝑛𝑖)∶= 𝑛, andobtain a corresponding notion of width for decompositions.
Example 2.54. The graph formed by two 3-cliques joined along a vertex

is expressed by the term 𝖥𝗎𝗌𝖾21,2(𝑡 + 𝑡), where 𝑡 is a term for the 3-clique with one constant:
𝑡 = 𝖥𝗎𝗌𝖾21,2𝖱𝖾𝗅𝖺𝖻

3
𝜄𝖥𝗎𝗌𝖾

4
2,3(𝖾 + 𝖱𝖾𝗅𝖺𝖻3𝜄𝖥𝗎𝗌𝖾

4
2,3(𝖾 + 𝖾)) ,

that creates an edge at a time and joins its endpoints with the existing edges. The function 𝜄 ∶ {1, 2} →
{1, 2, 3} indicates the inclusion of the set with two elements into the set with three elements.

Theoperations for relational structures recalled above are slightly different from theoriginal ones [Cou90],but define the same complexitymeasure [CM02;Mak04] and aremore similar to the categorical algebra thatwe will introduce in Section 4.1. They define a graph width that is equivalent to tree width [Cou92a] and, asa consequence of Theorem 2.30, to branch width as well.
Theorem 2.55 ([Cou92a, Theorem 2.2]). For a relational 𝜏-structure (𝐺, 𝑐) with constants, the algebraicwidth given by the operations of disjoint union and fusion of constants (Definition 2.53) is linearly related toits tree width:

𝗍𝗐𝖽(𝐺) ≤ 𝖺𝗐𝖽(𝐺, 𝑐) ≤ max{2 ⋅ 𝗍𝗐𝖽(𝐺), 𝗍𝗐𝖽(𝐺) + 𝛾(𝜏), 𝛾(𝐺)} .

Rank width and clique width are defined for graphs and so they are the operations that characterisethem [CK07]. These are defined for graphs where the vertices can have multiple labels and these labels canbe linearly modified.
Definition 2.56. An 𝑛-labelled graph (𝐺,𝐵) is a graph𝐺 on 𝑘 vertices with amatrix𝐵 ∈ 𝖬𝖺𝗍𝟚(𝑘, 𝑛) assigningto each vertex some of the labels {1,… , 𝑛}.• The generating structures are the empty 1-coloured graph, ∅1, and graph 𝗏1 with a single 1-colouredvertex.• The linear recolouring 𝖱𝖾𝖼𝗈𝗅𝑀 of an 𝑛-labelled graph (𝐺,𝐵) by an 𝑛 by 𝑚 matrix𝑀 ∈ 𝖬𝖺𝗍𝟚(𝑛, 𝑚) is the

𝑚-labelled graph (𝐺,𝐵 ⋅𝑀), where the colours have been modified by the matrix𝑀 .• The bilinear product+𝑀,𝑃 ,𝑁 of two labelled graphs, (𝐺,𝐵)with𝑚 labels and (𝐻,𝐶)with 𝑛 labels, by the
matrices𝑀 ∈ 𝖬𝖺𝗍𝟚(𝑚, 𝑙),𝑁 ∈ 𝖬𝖺𝗍𝟚(𝑛, 𝑙) and 𝑃 ∈ 𝖬𝖺𝗍𝟚(𝑚, 𝑛), is the 𝑙-labelled graph (𝐺+𝑃 𝐻,

( 𝐵⋅𝑀
𝐶⋅𝑁

)

),where 𝐺 +𝑃 𝐻 is the graph obtained from 𝐺 and𝐻 by adding an edge {𝑖, 𝑗} between the vertex 𝑖 of 𝐺and the vertex 𝑗 of𝐻 for every non-zero entry (𝑖, 𝑗) of 𝑃 . This operation adds the edges specified by 𝑃and recolours the vertices of 𝐺 and𝐻 with𝑀 and𝑁 .We assign a cost to the operations,𝗐(𝖱𝖾𝖼𝗈𝗅𝑀 )∶= 𝑛 and𝗐(+𝑀,𝑃 ,𝑁 )∶= max{𝑚, 𝑛}, and obtain a correspond-ing notion of width for decompositions.
Example 2.57. The 1-labelled 4-clique is expressed by the term

𝖱𝖾𝖼𝗈𝗅 (𝗏1 +1,1,1 𝖱𝖾𝖼𝗈𝗅 (𝗏1 +1,1,1 𝖱𝖾𝖼𝗈𝗅 (𝗏1 +1,1,1 𝗏1))) ,
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that creates one vertex at a time and connects it to all existing vertices. The recolouring by the matrix

∶=
( 1
1
) assigns the same colour to all existing vertices. Note that the structure of this term resemblesthe structure of the second clique term in Example 2.37 for the same graph.

The operations above are similar in spirit to those of clique width (Definition 2.35) and, in fact, theydefine an equivalent widthmeasure, rankwidth [CK07]. All these operations are derived from the categoricalstructure of graphs presented in Section 4.3.
Theorem 2.58 ([CK07, Theorem 3.4]). For a graph (𝐺,𝐵) with 𝑛 labels, the algebraic width given by linearrecolouring and bilinear product (Definition 2.56) is at least its rank width:

𝗋𝗐𝖽(𝐺) ≤ 𝖺𝗐𝖽(𝐺,𝐵) .

All these operations preserve monadic second order formulae. More precisely, the preservation theo-rem for disjoint union is known as Feferman-Vaugh-Mostowski preservation theorem [Fef57; FV59], whilethe preservation theorem for the fuse operation as defined above is by Courcelle and Makowsky [CM02,Lemma 5.2]. The proof of this statement relies on Ehrenfeucht-Fraıssé games [Fra55; Fra57; Ehr57; Ehr61].For a reference, the preservation theorems can be found in Makowsky’s review [Mak04]: for the disjointunion as Theorems 1.5 and 1.6, while for the fuse operation as Proposition 3.6.
Theorem 2.59 ([FV59; CM02]). The disjoint union and the fuse operation of 𝜏-structures with sources areeffectively MSO-smooth operations.

The preservation theorem for the rank width operations [CK09] is similar to that for clique width op-erations [CMR00] and relies on a result that shows that all quantifier free operations are effectively MSO-smooth [Cou92b, Theorem 3.4].
Theorem 2.60 ([CK09, Proposition 3.2]). Linear recolouring and bilinear product of graphs with labels areeffectively MSO-smooth operations.

This results allow us to compute the reduction set of MSO formulae and use it to run Algorithm 1 asdescribed in Theorem 2.52 on MSO-inductive classes of relational structures. As consequences of Theo-rems 2.55 and 2.58 to 2.60, bounded tree width and bounded clique width classes of relational structuresare, indeed, MSO-inductive.
Theorem 2.61 ([BC87; Cou90]). Classes of relational structures with sources of bounded tree width are ef-fectively MSO-inductive with respect to disjoint union and the fuse operation. The same is true for classes ofbounded branch width.
Theorem 2.62 ([CK09]). Classes of graphs with labels of bounded clique width are effectively MSO-inductivewith respect to linear recolouring and bilinear product. The same is true for classes of bounded rank width.

Theorems 2.59 and 2.61 show that the assumptions of Theorem 2.52 hold for MSO logic and the op-erations of disjoint union and fusion of sources, which gives Courcelle’s theorem for tree width [Cou92a,Proposition 3.1], while Theorems 2.60 and 2.62 show them for the operations for rank width [CMR00, The-orem 4].We assume that the input graph is given as a term as we do not deal with the problem of finding ef-ficient decompositions in this work. For tree width, it is known that the term can be computed in lineartime [Bod93a], while, for clique width, it can be approximated [OS06].
Corollary 2.63 ([Cou92a]). For a formula 𝜙 in the monadic second order logic of relational 𝜏-structures, theproblem of checking 𝜙 on an input structure of tree width at most 𝑘 is linear in the number of its vertices.
Corollary 2.64 ([CMR00; CO00]). For a formula 𝜙 in the monadic second order logic of graphs, the problemof checking 𝜙 on an input graph of clique width at most 𝑘 is linear in the number of its vertices.



Chapter 3

Monoidal Width

Monoidal width measures the structural complexity of morphisms in monoidal categories, and is the centraldefinition of this work. Monoidal width takes from tree width and rank width to capture their algorithmicproperties. The structural complexity of graphs, measured by tree and rank widths, gives an upper boundto the computational cost of checking a certain class of properties on graphs. Similarly, the structural com-plexity of morphisms in monoidal categories, measured by monoidal width, gives an upper bound to thecomputational cost of divide-and-conquer algorithms on monoidal categories.Monoidal width depends onmonoidal decompositions as tree width and rank width depend on tree andrank decompositions. A decomposition is a recipe for dividing amorphism, or a graph, into smaller parts withgiven operations. This can be done in different ways, using different operations in different orders. Someoperations are more costly than others, which causes some decompositions to bemore efficient than othersand divide-and-conquer algorithms on some decompositions run faster than on others. Decompositions thatuse cheap operations are more efficient.The operations for monoidal decompositions are the categorical composition and themonoidal product.Typically, compositions represent information or resource sharing, which makes them costly. On the otherhand, monoidal products represent juxtaposition, which is usually cheap.Monoidal decompositions are like algebraic decompositions formorphisms inmonoidal categorieswherethe choice of monoidal category fixes the operations.Monoidal decompositions may seem more restricted than the algebraic decompositions introduced inSection 2.3. However, on the one hand, the flexibility of the choice of categorical algebra makes up for thisrestriction and it allows us to capture tree width and clique width as particular cases. On the other hand,there are advantages to this restriction as it gives canonicity to some of the numerous possible choices ofoperations that define equivalent width measures. As shown in the previous chapter, the operations thatdetermine clique width are equivalent to those that determine rank width, in the sense that they determineequivalent width measures. Similarly, there are slightly different operations that all define tree width. Thenext chapter shows how all these operations are derivable from compositions andmonoidal products in twodifferent monoidal categories of graphs.

3.1 Decompositions in monoidal categories

Amonoidal decomposition describes a process as sequential and parallel compositions of smaller processes.Explicitly, a monoidal decomposition is a syntax tree in the language of monoidal categories: internal nodesare compositions or monoidal products, and leaves are morphisms that, when assembled according to theoperations in the decomposition, give the original morphism.
25
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Definition 3.1. Amonoidal decomposition 𝑑 ∈ 𝐷𝑓 of a morphism 𝑓 ∶ 𝐴 → 𝐵 in a monoidal category 𝖢 is asyntax tree that uses the composition # and the monoidal product⊗ in 𝖢 as operations.

𝑑 ∶∶= (𝑓 )
∣ (𝑑1—⊗—𝑑2) if 𝑑1 ∈ 𝐷𝑓1 , 𝑑2 ∈ 𝐷𝑓2 and 𝑓 = 𝑓1 ⊗ 𝑓2
∣ (𝑑1— #𝐶 —𝑑2) if 𝑑1 ∈ 𝐷𝑓1 , 𝑑2 ∈ 𝐷𝑓2 and 𝑓 = 𝑓1 #𝐶 𝑓2

The trivial decomposition, (𝑓 ) ∈ 𝐷𝑓 , is always a possibility, but usually not the best one, as it can costmore than other decompositions that break 𝑓 into smaller components.
Example 3.2. Let 𝑓 ∶ 1 → 2 and 𝑔∶ 2 → 1 be morphisms in a prop. A monoidal decomposition of 𝑓 #
(𝑓 ⊗ 𝑓 ) # (𝑔 ⊗ 𝑔) # 𝑔 can be described by vertical and horizontal cuts in the string diagram of the morphism(Figure 3.1). Vertical cuts represent compositions, while horizontal cuts represent monoidal products.

𝑓

𝑓

𝑓

𝑔

𝑔

𝑔

Figure 3.1: A monoidal decomposition represented with cuts in a string diagram.
Figure 3.1 encodes all the information of a monoidal decomposition but the order in which compositions andmonoidal products are associated. Choosing the order in which compositions and monoidal products areperformed, we obtain a formal expression of the decomposition in Figure 3.1.

(𝑓— #2 —(((𝑓— #2 —𝑔)—⊗—(𝑓— #2 —𝑔))— #2 —𝑔)),
We will avoid writing decompositions in this form whenever possible.

The cost of a monoidal decomposition bounds the running time of a divide-and-conquer algorithm onthis decomposition, and depends on the operations and morphisms that label its internal nodes and leaves.More precisely, it depends on a weight assigned to the operations andmorphisms that appear in the decom-position, in a way that we describe below.Each morphism has a weight. The running time of a divide-and-conquer algorithm on the trivial decom-position (𝑓 ) depends, usually more than exponentially, on the weight of the morphism 𝑓 , as it amounts torunning the brute-force algorithm on 𝑓 .
Definition 3.3. A weight function 𝗐∶ 𝖬𝗈𝗋(𝖢) → ℕ1 for a monoidal category 𝖢 is a function that assigns anatural number to each morphism of 𝖢 such that1. 𝗐(𝑓 #𝐵 𝑔) ≤ 𝗐(𝑓 ) + 𝗐(𝑔) + 𝗐(𝐵), for 𝑓 ∶ 𝐴 → 𝐵 and 𝑔∶ 𝐵 → 𝐶; and2. 𝗐(𝑓 ⊗ 𝑔) ≤ 𝗐(𝑓 ) + 𝗐(𝑔).The weight function extends to objects of 𝖢 by taking the weight of identity morphisms, 𝗐(𝐴)∶= 𝗐(𝟙𝐴).

The two conditions on the weight function intuitively capture the behaviour of the running time of thebrute-force algorithm on morphisms: the difference between running it on a composition 𝑓 #𝐵 𝑔 and on thetwo morphisms 𝑓 and 𝑔 separately depends only on the boundary 𝐵 of the composition; the running timeon a monoidal product 𝑓 ⊗ 𝑔 depends only on the running time on the separate components 𝑓 and 𝑔.
1We indicate with 𝖬𝗈𝗋(𝖢) the set of morphisms of a small category 𝖢. If the category 𝖢 is essentially small, we can still define aweight function for 𝖢 by defining it on its equivalent small category.
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Given the weight of morphisms, we can assign a weight to the operations of a monoidal category. Theweight of a composition along an object 𝐴 is 𝗐(𝐴)∶= 𝗐(𝟙𝐴), while the weight of a monoidal product is 0.These determine the width of a decomposition by taking the maximum of the weights of operations andmorphisms appearing in the decomposition.

Definition 3.4. The width of a monoidal decomposition 𝑑 ∈ 𝐷𝑓 of a morphism 𝑓 ∶ 𝐴 → 𝐵 in a monoidalcategory 𝖢 with a weight function 𝗐 is defined inductively below.
𝗐𝖽(𝑑)∶= 𝗐(𝑓 ) if 𝑑 = (𝑓 )

max{𝗐𝖽(𝑑1),𝗐𝖽(𝑑2)} if 𝑑 = (𝑑1—⊗—𝑑2)
max{𝗐𝖽(𝑑1), 𝗐(𝐶), 𝗐𝖽(𝑑2)} if 𝑑 = (𝑑1— #𝐶 —𝑑2)

The size of the monoidal decomposition 𝑑 is the number of its nodes.
𝗌𝗂𝗓𝖾(𝑑)∶= 1 if 𝑑 = (𝑓 )

𝗌𝗂𝗓𝖾(𝑑1) + 1 + 𝗌𝗂𝗓𝖾(𝑑2) if 𝑑 = (𝑑1—⊗—𝑑2) or 𝑑 = (𝑑1— #𝐶 —𝑑2)
Thanks to the inequalities in Definition 3.3, the weight of a morphism is bounded by the product of thesize and the width of any of its decompositions.

Lemma 3.5. Let 𝑑 ∈ 𝐷𝑓 be a monoidal decomposition of a morphism 𝑓 ∶ 𝐴 → 𝐵 in a monoidal category 𝖢.Then,
𝗐(𝑓 ) ≤ 𝗐𝖽(𝑑) ⋅ 𝗌𝗂𝗓𝖾(𝑑) .

Proof. This is easily shown by induction on 𝑑. If 𝑑 = (𝑓 ) is a leaf, then its width coincides with the weight of
𝑓 , 𝗐𝖽(𝑑)∶= 𝗐(𝑓 ), and its size is 1. If 𝑑 = (𝑑1— #𝐵 —𝑑2) or 𝑑 = (𝑑1— ⊗—𝑑2), we bound the weight of 𝑓applying the inequalities of Definition 3.3 and the induction hypothesis.

𝗐(𝑓 ) 𝗐(𝑓 )
≤ 𝗐(𝑓1) + 𝗐(𝑓2) + 𝗐(𝐵) ≤ 𝗐(𝑓1) + 𝗐(𝑓2)
≤ 𝗐𝖽(𝑑1) 𝗌𝗂𝗓𝖾(𝑑1) + 𝗐𝖽(𝑑2) 𝗌𝗂𝗓𝖾(𝑑2) + 𝗐(𝐵) ≤ 𝗐𝖽(𝑑1) 𝗌𝗂𝗓𝖾(𝑑1) + 𝗐𝖽(𝑑2) 𝗌𝗂𝗓𝖾(𝑑2)
≤ max{𝗐𝖽(𝑑1),𝗐(𝐵),𝗐𝖽(𝑑2)} ≤ max{𝗐𝖽(𝑑1),𝗐𝖽(𝑑2)}

⋅ (𝗌𝗂𝗓𝖾(𝑑1) + 𝗌𝗂𝗓𝖾(𝑑2) + 1) ⋅ (𝗌𝗂𝗓𝖾(𝑑1) + 𝗌𝗂𝗓𝖾(𝑑2) + 1)
= 𝗐𝖽(𝑑) ⋅ 𝗌𝗂𝗓𝖾(𝑑) = 𝗐𝖽(𝑑) ⋅ 𝗌𝗂𝗓𝖾(𝑑)

The width of a decomposition is not influenced by the order in which the operations appear, but only bytheir costs. This means that all the different monoidal decompositions corresponding to the cuts in Figure 3.1have the same width and this representation can be used without any consequences.
Example 3.6. The width of the decomposition in Example 3.2, if we assume that 𝗐(𝑓 ) = 𝗐(𝑔) = 2, is 2. Infact, compositions are along at most 2 wires, and the morphisms at the leaves all weight 2.

Themonoidal width of a morphism is the width of a cheapest decomposition, and gives a bound for therunning time of a divide-and-conquer algorithm on the given morphism.
Definition 3.7. The monoidal width of a morphism 𝑓 in a monoidal category 𝖢 with a weight function 𝗐 isthe width of a cheapest decomposition:

𝗆𝗐𝖽(𝑓 )∶= min
𝑑∈𝐷𝑓

𝗐𝖽(𝑑).
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Example 3.8. With the morphisms 𝑓 and 𝑔 as in Example 3.2, we define a family of morphisms ℎ𝑛 ∶ 1 → 1inductively:• ℎ0∶= 𝑓 #2 𝑔;• ℎ𝑛+1∶= 𝑓 #2 (ℎ𝑛 ⊗ ℎ𝑛) #2 𝑔.Each ℎ𝑛 has amonoidal decomposition of width 2𝑛 where the first node is the composition along the 2𝑛 wiresin the middle.

𝑓

𝑓

𝑓

𝑔

𝑔

𝑔

⋯

⋯
⋯

⋯

⋯

⋯
⋯

⋯

However, the monoidal decomposition below shows that𝗆𝗐𝖽(ℎ𝑛) ≤ 2 for any 𝑛.

𝑓

𝑓

𝑓

𝑔

𝑔

𝑔

⋯

⋯
⋯

⋯

3.2 Categories with copy
A simple case study formonoidal decompositions are the copymorphisms of symmetricmonoidal categorieswith coherent copying. We bound their monoidal width, a result that is useful to compute the width in propswith biproducts (Section 3.3) and prove the more complex bounds in Chapters 5 and 6.
Definition 3.9. A symmetric monoidal category 𝖢 has coherent copying if there is a class of copiable objects
Δ𝖢 ⊆ 𝖮𝖻𝗃(𝖢) such that• 𝑋, 𝑌 ∈ Δ𝖢 iff𝑋 ⊗ 𝑌 ∈ Δ𝖢;• every object𝑋 ∈ Δ𝖢 is endowed with a copy morphism 𝑋 ∶ 𝑋 → 𝑋 ⊗𝑋;• the copy morphisms are coherent: for every𝑋, 𝑌 ∈ Δ𝖢, 𝑋⊗𝑌 = ( 𝑋 ⊗ 𝑌 ) # (𝟙𝑋 ⊗𝜎𝑋,𝑌 ⊗ 𝟙𝑌 ).

𝑋 ⊗ 𝑌
𝑋 ⊗ 𝑌

𝑋 ⊗ 𝑌
=

𝑋

𝑌

𝑋

𝑌

𝑋

𝑌

For propswith coherent copy, we assume that theweight of copymorphisms, symmetries and identities isgiven by𝗐( 𝑋)∶= 2 ⋅𝗐(𝑋),𝗐(𝜎𝑋,𝑌 )∶= 𝗐(𝑋)+𝗐(𝑌 ) and𝗐(𝟙𝑋)∶= 𝗐(𝑋). Note that, on thesemorphisms,this weight function satisfies the conditions in Definition 3.3.
Example 3.10. Any cartesian prop has coherent copying, where the copy morphisms are the universal onesgiven by the cartesian structure: 𝑛∶= ⟨𝟙𝑛, 𝟙𝑛⟩∶ 𝑛 → 𝑛 + 𝑛. The monoidal width of the copy morphismon 𝑛 is bounded by 𝑛 + 1. This is shown more generally in Lemma 3.11, but the idea of the proof can beexemplified in this case. Let 𝛾𝑛,𝑚∶= ( 𝑛 ⊗ 𝟙𝑚) # (𝟙𝑛 ⊗ 𝜎𝑛,𝑚)∶ 𝑛 + 𝑚 → 𝑛 + 𝑚 + 𝑛 be the morphism inFigure 3.2. We can decompose 𝛾𝑛,𝑚 in terms of 𝛾𝑛−1,𝑚+1 (in the dashed box in Figure 3.2), the copy morphism
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𝛾𝑛,𝑚 =
𝑛

𝑚

𝑛

𝑚

𝑛

=

𝑛 − 1

1

𝑚

𝑛 − 1

1

𝑚

𝑛 − 1

1

Figure 3.2: Decomposing copy morphisms.

1 and the symmetry 𝜎1,1, by cutting along at most 𝑛 + 1 + 𝑚 wires:
𝛾𝑛,𝑚 = (𝟙𝑛−1 ⊗ (( 1 ⊗ 𝟙1) # (𝟙1 ⊗ 𝜎1,1))) #𝑛+1+𝑚 (𝑔𝑛−1,𝑚+1 ⊗ 𝟙1).

By induction, we decompose 𝑛 = 𝛾𝑛,0 cutting along only 𝑛 + 1 wires. In particular, this means that
𝗆𝗐𝖽( 𝑛) ≤ 𝑛 + 1.

The following result generalises the reasoning in Example 3.10.
Lemma 3.11. Let 𝖢 be a symmetric monoidal category with coherent copying and 𝑑 ∈ 𝐷𝑓 be a monoidal
decomposition of a morphism 𝑓 ∶ 𝑌 ⊗ 𝑋 ⊗ 𝑍 → 𝑊 , with 𝑋∶= 𝑋1 ⊗⋯ ⊗ 𝑋𝑛. Then we can construct amonoidal decomposition 𝑋(𝑑) of the morphism 𝛾𝑋(𝑓 )∶= (𝟙𝑌 ⊗ 𝑋 ⊗ 𝟙𝑍 ) # (𝟙𝑌⊗𝑋 ⊗ 𝜎𝑋,𝑍 ) # (𝑓 ⊗ 𝟙𝑋)

𝛾𝑋(𝑓 ) ∶= 𝑓

𝑌

𝑋

𝑍

𝑊

𝑋

of bounded width:
𝗐𝖽(𝑋(𝑑)) ≤ max{𝗐𝖽(𝑑),𝗐(𝑌 ) + 𝗐(𝑍) + (𝑛 + 1) ⋅ max

𝑖=1,…,𝑛
𝗐(𝑋𝑖)}.

Proof. Proceed by induction on the number 𝑛 of objects being copied. If 𝑛 = 0, then we are done becausewe can keep the decomposition 𝑑: 𝐼 (𝑑)∶= 𝑑.Suppose that the statement is true for any 𝑓 ′ ∶ 𝑌 ⊗𝑋⊗𝑍′ → 𝑊 and let 𝑓 ∶ 𝑌 ⊗𝑋⊗𝑋𝑛+1⊗𝑍 → 𝑊 .Then we can rewrite 𝛾𝑋⊗𝑋𝑛+1 (𝑓 ) using coherence of the copy morphisms and the properties of the
symmetries 𝜎 .

𝛾𝑋⊗𝑋𝑛+1 (𝑓 )

= 𝑓

𝑌

𝑋 ⊗𝑋𝑛+1

𝑍

𝑊

𝑋 ⊗𝑋𝑛+1
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=

𝑓
𝑌

𝑋

𝑋𝑛+1

𝑍

𝑊

𝑋

𝑋𝑛+1

=

𝑓
𝑌

𝑋

𝑋𝑛+1

𝑍

𝑊

𝑋

𝑋𝑛+1

Consider 𝛾𝑋(𝑓 )∶= (𝟙 ⊗ 𝑋 ⊗ 𝟙) # (𝟙 ⊗ 𝜎) # (𝑓 ⊗ 𝟙), the morphism in the dashed box. By the induc-tion hypothesis, there is a monoidal decomposition 𝑋(𝑑) of 𝛾𝑋(𝑓 ) with bounded width: 𝗐𝖽(𝑋(𝑑)) ≤
max{𝗐𝖽(𝑑),𝗐(𝑌 ) +𝗐(𝑋𝑛+1⊗𝑍) + (𝑛+ 1) ⋅max𝑖=1,…,𝑛 𝗐(𝑋𝑖)}. Using this decomposition, we can define amonoidal decomposition 𝑋⊗𝑋𝑛+1 (𝑑) of 𝛾𝑋⊗𝑋𝑛+1 (𝑓 ) as shown below.

𝑓
𝑌

𝑋

𝑋𝑛+1

𝑍

𝑊

𝑋

𝑋𝑛+1

Note that the only cut that matters is the longest vertical one, the composition node along 𝑌 ⊗𝑋⊗𝑋𝑛+1⊗
𝑍⊗𝑋𝑛+1, because all the other cuts are cheaper. The cost of this cut is𝗐(𝑌 )+𝗐(𝑍)+2 ⋅𝗐(𝑋𝑛+1)+𝗐(𝑋) =
𝗐(𝑌 ) + 𝗐(𝑍) + 𝗐(𝑋𝑛+1) +

∑𝑛+1
𝑖=1 𝗐(𝑋𝑖). With this observation and applying the induction hypothesis, wecan compute the width of the decomposition 𝑋⊗𝑋𝑛+1 (𝑑).

𝗐𝖽(𝑋⊗𝑋𝑛+1 (𝑑))

= max{𝗐(𝟙𝑌⊗𝑋),𝗐( 𝑋𝑛+1 ),𝗐(𝟙𝑍 ),𝗐(𝟙𝑋𝑛+1 ),𝗐(𝜎𝑋𝑛+1,𝑍 ),𝗐𝖽(𝑋(𝑑)),

𝗐(𝑌 ⊗ 𝑋 ⊗𝑍 ⊗𝑋𝑛+1),𝗐(𝑋𝑛+1 ⊗𝑍 ⊗𝑋𝑛+1)}

≤ max{𝗐(𝑌 ) + 𝗐(𝑍) + 𝗐(𝑋𝑛+1) +
𝑛+1
∑

𝑖=1
𝗐(𝑋𝑖),𝗐𝖽(𝑋(𝑑))}

≤ max{𝗐(𝑌 ) + 𝗐(𝑍) + (𝑛 + 2) ⋅ max
𝑖=1,…,𝑛+1

𝗐(𝑋𝑖),𝗐𝖽(𝑋(𝑑))}

≤ max{𝗐(𝑌 ) + 𝗐(𝑍) + (𝑛 + 2) ⋅ max
𝑖=1,…,𝑛+1

𝗐(𝑋𝑖),

𝗐𝖽(𝑑),𝗐(𝑌 ) + 𝗐(𝑋𝑛+1 ⊗𝑍) + (𝑛 + 1) ⋅ max
𝑖=1,…,𝑛

𝗐(𝑋𝑖)}

= max{𝗐(𝑌 ) + 𝗐(𝑍) + (𝑛 + 2) ⋅ max
𝑖=1,…,𝑛+1

𝗐(𝑋𝑖),𝗐𝖽(𝑑)}
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3.3 Categories with biproducts
This section shows another simple example of monoidal decompositions. In props with biproducts, mor-phisms have a rank which is related to their monoidal width. An example of such props is the category ofmatrices2.
Example 3.12. The category𝖬𝖺𝗍𝑅 of matrices over a semiring 𝑅 is a prop where the monoidal product is abiproduct. Its morphisms 𝑛 → 𝑚 are 𝑚 rows by 𝑛 columns matrices with entries in the semiring 𝑅 and thebiproduct of matrices, 𝐴⊕ 𝐵∶=

( 𝐴 𝟘
𝟘 𝐵

), is the monoidal product.
By the string diagrammatic formulation of Fox’s theorem [Fox76], every object in a bicartesian prop hasnatural commutative monoid and cocommutative comonoid structures. This structures are fundamental forthe proofs in this section.

Theorem 3.13. A symmetric monoidal category 𝖢 is cartesian if and only if every object 𝐴 is equipped witha cocommutative comonoid structure and this structure is natural and uniform, whose structure morphismsand equations are in Figure 3.3.

𝐴
𝐴

𝐴
𝐴

= = =

𝑓𝐴
𝐵

𝐵
=

𝑓

𝑓
𝐴

𝐵

𝐵
𝑓𝐴 = 𝐵

𝐴⊗ 𝐵
𝐴⊗𝐵

𝐴⊗𝐵
=

𝐴

𝐵

𝐴

𝐵

𝐴

𝐵

𝐴⊗ 𝐵 =
𝐴

𝐵

Figure 3.3: Structure and equations for a natural and uniform cocommutative comonoid.

The results in this section hold for monoidal categories where the monoidal product is the biproductand whose objects are a unique factorisation monoid. To help readability, some results are stated for theparticular case of props, but they apply to, for example, coloured props as well. When the monoidal productis the biproduct, then, in particular, the monoidal unit is the zero object. Then, there is only one scalar: theonly morphism 𝐼 → 𝐼 is the identity. In some sense, this means that the interesting part of a morphismhappens on the boundary and a reasonable choice of weight function for these categories only keeps trackof the complexity of the boundaries.
2We thank JS Lemay for suggesting to generalise this result for matrices to categories with biproducts.
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Definition 3.14. For a prop 𝖯, define a weight function 𝗐∶  → ℕ as 𝗐(𝑔)∶= max{𝑚, 𝑛}, for 𝑔∶ 𝑛 → 𝑚in 𝖯. For a monoidal category 𝖢 where the objects are a unique factorisation monoid, define the dimension
|𝑋| of an object𝑋 to be the number of factors in its unique⊗-factorisation𝑋 = 𝑋1 ⊗…⊗𝑋𝑘, |𝑋|∶= 𝑘.A weight function for 𝖢 is 𝗐∶  → ℕ as 𝗐(𝑔)∶= max{|𝑋|, |𝑌 |}, for 𝑔∶ 𝑋 → 𝑌 in 𝖢.

This definition satisfies the conditions for a weight function.
Lemma 3.15. In a monoidal category whose objects are a unique factorisation monoid, the function 𝗐 inDefinition 3.14 satisfies the conditions for a weight function in Definition 3.3.
Proof. For morphisms 𝑓 ∶ 𝑋 → 𝑌 , 𝑔∶ 𝑌 → 𝑍 and 𝑓 ′ ∶ 𝑋′ → 𝑌 ′ in 𝖢, let 𝑋 = 𝑋1 ⊗ ⋯ ⊗ 𝑋𝑙, 𝑌 =
𝑌1 ⊗ ⋯ ⊗ 𝑌𝑚, 𝑍 = 𝑍1 ⊗ ⋯ ⊗ 𝑍𝑛, 𝑋′ = 𝑋′

1 ⊗ ⋯ ⊗ 𝑋′
𝑙′ and 𝑌 ′ = 𝑌 ′

1 ⊗ ⋯ ⊗ 𝑌 ′
𝑚′ be the unique ⊗-

factorisations of𝑋, 𝑌 ,𝑍,𝑋′ and 𝑌 ′. We compute and bound their weights.
𝗐(𝑓 # 𝑔) 𝗐(𝑓 ⊗ 𝑓 ′)

∶= max{𝑙, 𝑛} ∶= max{𝑙 + 𝑙′, 𝑚 + 𝑚′}
≤max{𝑙, 𝑚, 𝑛} + 𝑚 ≤max{𝑙 + 𝑙′, 𝑙 + 𝑚′, 𝑙′ + 𝑚,𝑚 + 𝑚′}
≤max{𝑙, 𝑚} + max{𝑚, 𝑛} + 𝑚 =max{𝑙, 𝑚} + max{𝑙′, 𝑚′}
∶=𝗐(𝑓 ) + 𝗐(𝑔) + 𝑚 ∶=𝗐(𝑓 ) + 𝗐(𝑓 ′)

The proof strategy consists in finding a standard shape of decomposition and show that it is minimal.When amorphism 𝑓 can bewritten as amonoidal product 𝑓 = 𝑓1⊗⋯⊗𝑓𝑘 ofmorphisms of smaller weight,the decompositions that use this factorisation are more efficient (Proposition 3.19). Under the assumptionsabove, every morphism has a unique⊗-factorisation (Lemma 3.20) and a minimal decomposition must usethis factorisation.

𝑓 = 𝑓1 ⊗⋯⊗ 𝑓𝑘 =

𝑢1 𝑣1

𝑢2 𝑣2

⋮

𝑢𝑘 𝑣𝑘

Every factor 𝑓𝑖 can be minimally split as a composition 𝑓𝑖 = 𝑢𝑖 #𝑟𝑖 𝑣𝑖 and give a decomposition of 𝑓 ofwidth at least max𝑖=1,…,𝑘 𝑟𝑖. We show that each 𝑢𝑖 and 𝑣𝑖 can be further decomposed and their monoidalwidth is at most 𝑟𝑖 + 1. This compound decomposition is minimal and bounds the monoidal width of 𝑓 as
max𝑖=1,…,𝑘 𝑟𝑖 ≤ 𝗆𝗐𝖽(𝑓 ) ≤ max𝑖=1,…,𝑘 𝑟𝑖 + 1.The shape of the minimal decomposition above shows that minimal vertical cuts play an important rolein computing monoidal width. Following the characterisation of rank for matrices, we define the rank ofmorphisms as their minimal vertical cut.
Lemma 3.16 ([PO99]). Let 𝐴∶ 𝑛→ 𝑚 in𝖬𝖺𝗍ℕ. Thenmin{𝑘 ∈ ℕ ∶ 𝐴 = 𝐵 #𝑘 𝐶} = 𝗋𝗄(𝐴).
Definition 3.17. The rank of a morphism 𝑓 ∶ 𝑛→ 𝑚 in a prop 𝖯 is its minimal vertical cut:

𝗋𝗄(𝑓 )∶= min{𝑘 ∈ ℕ ∶ 𝑓 = 𝑔 #𝑘 ℎ} .



3.3. CATEGORIES WITH BIPRODUCTS 33
Similarly, for a morphism 𝑓 ∶ 𝑋 → 𝑌 in a monoidal category 𝖢, whose objects are a unique factorisationmonoid, its rank is its minimal vertical cut:

𝗋𝗄(𝑓 )∶= min{𝑘 ∈ ℕ ∶ 𝑓 = 𝑔 #𝐶 ℎ ∧ |𝐶| = 𝑘} .

The first step for computing monoidal width is to show that, whenever possible, decompositions shouldstart with a⊗ node. This result needs a technical lemma: discarding outputs or inputs of a morphism cannotincrease its width.
Lemma 3.18. Let 𝑓 ∶ 𝑛 → 𝑚 in a prop 𝖯 where 0 is both initial and terminal and 𝑑 ∈ 𝐷𝑓 . Let 𝑓𝐷∶= 𝑓 #
(𝟙𝑚−𝑘 ⊗ 𝑘) and 𝑓𝑍∶= (𝟙𝑛−𝑘 ⊗ 𝑘) # 𝑓 , with 𝑘 ≤ 𝑚 and 𝑘 ≤ 𝑛, respectively.

𝑓𝐷∶= 𝑓𝑛 𝑚 − 𝑘 , 𝑓𝑍∶= 𝑓𝑛 − 𝑘 𝑚 .

Then there are monoidal decompositions (𝑑) ∈ 𝐷𝑓𝐷 and (𝑑) ∈ 𝐷𝑓𝑍 of bounded width, 𝗐𝖽((𝑑)) ≤
𝗐𝖽(𝑑) and 𝗐𝖽((𝑑)) ≤ 𝗐𝖽(𝑑).
Proof. We show the inequality for 𝑓𝐷 by induction on the decomposition 𝑑. The inequality for 𝑓𝑍 followsfrom the fact that the same proof applies to 𝖯𝗈𝗉. If the decomposition has only one node, 𝑑 = (𝑓 ), then wedefine(𝑑)∶= (𝑓𝐷) and obtain that

𝗐𝖽((𝑑))∶= max{𝑛, 𝑚 − 𝑘} ≤ max{𝑛, 𝑚} ∶=𝗐𝖽(𝑑) .

If the decomposition starts with a composition node, 𝑑 = (𝑑1— #𝑗 —𝑑2), then 𝑓 = 𝑓1 #𝑗 𝑓2, where 𝑑𝑖 is amonoidal decomposition of 𝑓𝑖.
𝑓𝑛 𝑚 − 𝑘 = 𝑓1 𝑓2𝑛 𝑚 − 𝑘

By induction hypothesis, there is amonoidal decomposition(𝑑2) of 𝑓2 #(𝟙𝑚−𝑘⊗ 𝑘) such that𝗐𝖽((𝑑2)) ≤
𝗐𝖽(𝑑2). We use this decomposition to define a decomposition(𝑑)∶= (𝑑1— #𝑗 —(𝑑2)) of 𝑓𝐷. Then,(𝑑)is a monoidal decomposition of 𝑓 # (𝟙𝑚−𝑘 ⊗ 𝑘) because 𝑓 # (𝟙𝑚−𝑘 ⊗ 𝑘) = 𝑓1 # 𝑓2 # (𝟙𝑚−𝑘 ⊗ 𝑘) and itswidth is bounded.

𝗐𝖽((𝑑))∶= max{𝗐𝖽(𝑑1), 𝑗,𝗐𝖽((𝑑2))} ≤ max{𝗐𝖽(𝑑1), 𝑗,𝗐𝖽(𝑑2)} ∶=𝗐𝖽(𝑑)

If the decomposition starts with a tensor node, 𝑑 = (𝑑1— ⊗ —𝑑2), then 𝑓 = 𝑓1 ⊗ 𝑓2, with 𝑑𝑖 monoidaldecomposition of 𝑓𝑖 ∶ 𝑛𝑖 → 𝑚𝑖. There are two possibilities: either 𝑘 ≤ 𝑚2 or 𝑘 > 𝑚2. If 𝑘 ≤ 𝑚2, then
𝑓 # (𝟙𝑚−𝑘 ⊗ 𝑘) = 𝑓1 ⊗ (𝑓2 # (𝟙𝑚2−𝑘 ⊗ 𝑘)).

𝑓𝑛 𝑚 − 𝑘 =
𝑓1

𝑓2

𝑛1

𝑛2

𝑚1

𝑚2 − 𝑘

By induction hypothesis, there is amonoidal decomposition(𝑑2) of 𝑓2 #(𝟙𝑚−𝑘⊗ 𝑘) such that𝗐𝖽((𝑑2)) ≤
𝗐𝖽(𝑑2). Then, we can use this decomposition to define a decomposition (𝑑)∶= (𝑑1—⊗—(𝑑2)) of 𝑓𝐷whose width is bounded.

𝗐𝖽((𝑑))∶= max{𝗐𝖽(𝑑1),𝗐𝖽((𝑑2))} ≤ max{𝗐𝖽(𝑑1),𝗐𝖽(𝑑2)} ∶=𝗐𝖽(𝑑)

If 𝑘 > 𝑚2, then 𝑓 # (𝟙𝑚−𝑘 ⊗ 𝑘) = (𝑓1 # (𝟙𝑚1−𝑘+𝑚2
⊗ 𝑘−𝑚2

))⊗ (𝑓2 # 𝑚2
).

𝑓𝑛 𝑚 − 𝑘 =
𝑓1

𝑓2

𝑛1

𝑛2

𝑚1 − 𝑘 + 𝑚2
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By induction hypothesis, there are monoidal decompositions(𝑑𝑖) of 𝑓1 # (𝟙𝑚1−𝑘+𝑚2

⊗ 𝑘−𝑚2
) and 𝑓2 # 𝑚2such that𝗐𝖽((𝑑𝑖)) ≤ 𝗐𝖽(𝑑𝑖). Then, we can use these decompositions to define a monoidal decomposition

(𝑑)∶= ((𝑑1)—⊗—(𝑑2)) of 𝑓𝐷 of bounded width.
𝗐𝖽((𝑑))∶= max{𝗐𝖽((𝑑1)),𝗐𝖽((𝑑2))} ≤ max{𝗐𝖽(𝑑1),𝗐𝖽(𝑑2)} ∶=𝗐𝖽(𝑑)

As a consequence, decompositions that start with a⊗ node are more efficient.
Proposition 3.19. Let 𝑓 ∶ 𝑛→ 𝑚 be amorphism in a prop 𝖯 and 𝑑′ = (𝑑′1—#𝑘—𝑑′2) ∈ 𝐷𝑓 be a decomposition
of 𝑓 . Suppose there are 𝑓1 ∶ 𝑛1 → 𝑚1 and 𝑓2 ∶ 𝑛2 → 𝑚2 such that 𝑓 = 𝑓1 ⊗ 𝑓2. Then, there is 𝑑 =
(𝑑1—⊗—𝑑2) ∈ 𝐷𝑓 such that 𝗐𝖽(𝑑) ≤ 𝗐𝖽(𝑑′).
Proof. Since the monoidal unit is the zero object, 𝑓1 = (𝟙 ⊗ 𝑛1 ) # 𝑓 # (𝟙 ⊗ 𝑚1

) and 𝑓2 = ( 𝑛2 ⊗ 𝟙) # 𝑓 #
( 𝑚2

⊗ 𝟙). By Lemma 3.18, there are monoidal decompositions 𝑑1 = 1(1(𝑑′)) and 𝑑2 = 2(2(𝑑′)) of
𝑓1 and 𝑓2 with bounded width,𝗐𝖽(𝑑𝑖) ≤ 𝗐𝖽(𝑑′). Then, the decomposition 𝑑∶= (𝑑1—⊗—𝑑2) is a monoidaldecomposition of 𝑓 and

𝗐𝖽(𝑑)
∶= max{𝗐𝖽(𝑑1),𝗐𝖽(𝑑2)}
≤ 𝗐𝖽(𝑑′)

Inmonoidal categorieswhere themonoidal unit is a zero object and the objects are a unique factorisationmonoid, morphisms have a unique⊗-decomposition.
Lemma 3.20. Let 𝖢 be a monoidal category whose monoidal unit 0 is a zero object, and whose objects are aunique factorisation monoid. Then any morphism 𝑓 in 𝖢 has a unique⊗-decomposition.
Proof. Suppose that 𝑓 ∶ 𝑋 → 𝑌 has two ⊗-decompositions 𝑓 = 𝑓1 ⊗ ⋯ ⊗ 𝑓𝑚 = 𝑔1 ⊗ ⋯ ⊗ 𝑔𝑛 with
𝑓𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 and 𝑔𝑗 ∶ 𝑍𝑗 → 𝑊𝑗 that are non⊗-decomposables. Suppose 𝑚 ≤ 𝑛 and proceed by inductionon 𝑚.If𝑚 = 0, then𝑋 = 0 is the empty monoidal product, and 𝑓 = 𝟙0 and 𝑔𝑖 = 𝟙0 for every 𝑖 = 1,… , 𝑛mustbe identities on 0 because 0 is both initial and terminal.For the induction step, suppose that𝑓∶= 𝑓1⊗…⊗𝑓𝑚−1 has a unique⊗-decomposition. Let𝐴1⊗…⊗𝐴𝛼and𝐵1⊗…⊗𝐵𝛽 be the unique⊗-decompositions of𝑋1⊗…⊗𝑋𝑚 = 𝑍1⊗…⊗𝑍𝑛 and 𝑌1⊗…⊗𝑌𝑚 =
𝑊1 ⊗…⊗𝑊𝑛, respectively. Then, there are 𝑥 ≤ 𝛼 and 𝑦 ≤ 𝛽 such that 𝐴1 ⊗…⊗𝐴𝑥 = 𝑋1 ⊗…⊗𝑋𝑚−1and 𝐵1 ⊗…⊗𝐵𝑦 = 𝑌1 ⊗…⊗ 𝑌𝑚−1. Then, we can rewrite 𝑓 in terms of 𝑔𝑖s, for some 𝑘 ≤ 𝑛:

𝑓1

𝑓𝑚−1

𝑋1

𝑋𝑚−1

𝑌1

𝑌𝑚−1

⋮ =

𝑓1

𝑓𝑚−1

𝑓𝑚

𝑋1

𝑋𝑚−1

𝑌1

𝑌𝑚−1

⋮

=

𝑔1

𝑔𝑘−1

𝑔𝑘

𝑔𝑛

⋮

⋮

=

𝑔1

𝑔𝑘−1

⋮
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By induction hypothesis, 𝑓 has a unique⊗-decomposition, thus it must be that 𝑘 = 𝑚, for every 𝑖 < 𝑚 − 1
𝑓𝑖 = 𝑔𝑖 and 𝑓𝑚−1 = (𝟙 ⊗ ) # 𝑔𝑘 # (𝟙 ⊗ ) because 𝑔𝑖 are not⊗-decomposable. Then, we can express 𝑓𝑚in terms of 𝑔𝑚,… , 𝑔𝑛:

𝑓𝑚𝑋𝑚 𝑌𝑚 =

𝑓1

𝑓𝑚−1

𝑓𝑚𝑋𝑚 𝑌𝑚

⋮

=

𝑔1

𝑔𝑚−1

𝑔𝑚

𝑔𝑛

⋮

⋮

=

𝑔𝑚−1

𝑔𝑚

𝑔𝑛

⋮

By hypothesis, 𝑓𝑚 is not⊗-decomposable and 𝑚 ≤ 𝑛. Thus, 𝑛 = 𝑚, 𝑓𝑚−1 = 𝑔𝑚−1 and 𝑓𝑚 = 𝑔𝑚.

These results show that a minimal monoidal decomposition of 𝑓 = 𝑓1 ⊗⋯⊗ 𝑓𝑘 can be obtained fromminimal monoidal decompositions of 𝑓𝑖.

Corollary 3.21. Let 𝑓 = 𝑓1⊗⋯⊗𝑓𝑘 be the unique⊗-decomposition of amorphism 𝑓 in amonoidal categorywhere the monoidal unit is a zero object and the objects are a unique factorisation monoid. Then, a minimalmonoidal decomposition of 𝑓 is 𝑑 = (𝑑1—⊗—(𝑑2—⊗—⋯ 𝑑𝑘)), for minimal decompositions 𝑑𝑖 of 𝑓𝑖.

How do we find minimal decompositions of the factors 𝑓𝑖? Since they cannot be ⊗-factored further,their minimal decompositions will start with a composition node. When this composition node is minimal, itcorresponds to the rank and we obtain 𝗆𝗐𝖽(𝑓 ) ≥ max𝑖{𝗋𝗄(𝑓𝑖)}. For the upper bound, we show that every
𝑓𝑖 can be decomposed with width at most 𝗋𝗄(𝑓𝑖) + 1. The unpleasant +1 in this bound comes from thedifference between the weight and the minimal boundary of the morphisms and , and from the +1 inthe bound of the monoidal width of copy morphisms in Lemma 3.11.

Proposition 3.22. The monoidal width of a morphism 𝑓 ∶ 𝑛 → 𝑚 in a bicartesian prop 𝖯 is bounded by itsdomain and codomain: 𝗆𝗐𝖽(𝑓 ) ≤ min{𝑚, 𝑛} + 1.

Proof. We proceed by induction on 𝑘 = max{𝑚, 𝑛}. There are three base cases.
• If 𝑛 = 0, then 𝑓 = 𝑚 because 0 is initial by hypothesis. Then, 𝗆𝗐𝖽(𝑓 ) = 𝗆𝗐𝖽(

⨂

𝑚 ) ≤ 𝗐( ) =
max{1, 1} ≤ min{0, 1} + 1.• If 𝑚 = 0, then 𝑓 = 𝑛 because 0 is terminal by hypothesis. Then, 𝗆𝗐𝖽(𝑓 ) = 𝗆𝗐𝖽(

⨂

𝑛 ) ≤ 𝗐( ) =
max{1, 1} ≤ min{0, 1} + 1.• If 𝑚 = 𝑛 = 1, then𝗆𝗐𝖽(𝑓 ) ≤ 𝗐(𝑓 ) = max{1, 1} ≤ min{1, 1} + 1 by definition of the weight function.

For the induction steps, suppose that the statement is true for any 𝑓 ′ ∶ 𝑛′ → 𝑚′ with max{𝑚′, 𝑛′} < 𝑘 =
max{𝑚, 𝑛} andmin{𝑚′, 𝑛′} ≥ 1. There are three possibilities.
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1. If 0 < 𝑛 < 𝑚 = 𝑘, then 𝑓 can be decomposed as shown below because 𝑛+1 is uniform andmorphismsare copiable because 𝖯 is cartesian by hypothesis.

𝑓𝑛 𝑚

= 𝑓𝑛 𝑚 − 1
1

= 𝑓𝑛

𝑚 − 1

1

=
𝑓

𝑓
𝑛

𝑚 − 1

1

This corresponds to 𝑓 = 𝑛 # (𝟙𝑛 ⊗ ℎ1) #𝑛+1 (ℎ2 ⊗ 𝟙1), where ℎ1∶= 𝑓 # ( 𝑚−1 ⊗ 𝟙1)∶ 𝑛 → 1 and
ℎ2∶= 𝑓 # (𝟙𝑚−1 ⊗ 1)∶ 𝑛→ 𝑚 − 1.Then,𝗆𝗐𝖽(𝑓 ) ≤ max{𝗆𝗐𝖽( 𝑛 # (𝟙𝑛⊗ℎ1)), 𝑛+1,𝗆𝗐𝖽(ℎ2⊗𝟙1)}. So, we want to bound the monoidalwidth of the twomorphisms appearing in the formula above. For the first morphism, we apply the induc-tion hypothesis because ℎ1 ∶ 𝑛 → 1 and 1, 𝑛 < 𝑘 and we apply Lemma 3.11. For the second morphism,we apply the induction hypothesis because ℎ2 ∶ 𝑛→ 𝑚 − 1 and 𝑛, 𝑚 − 1 < 𝑘.

𝗆𝗐𝖽( 𝑛 # (𝟙𝑛 ⊗ ℎ1)) 𝗆𝗐𝖽(ℎ2 ⊗ 𝟙1)
≤ (by Lemma 3.11) = (by Definition 3.4)
max{𝗆𝗐𝖽(ℎ1), 𝑛 + 1} 𝗆𝗐𝖽(ℎ2)
≤ (by induction hypothesis) ≤ (by induction hypothesis)
max{min{𝑛, 1} + 1, 𝑛 + 1} min{𝑛, 𝑚 − 1} + 1
= (because 0 < 𝑛) = (because 𝑛 ≤ 𝑚 − 1)
𝑛 + 1 𝑛 + 1

Then,𝗆𝗐𝖽(𝑓 ) ≤ 𝑛 + 1 = min{𝑚, 𝑛} + 1 because 𝑛 < 𝑚.2. If 0 < 𝑚 < 𝑛 = 𝑘, we can apply Case 1 to 𝖯𝗈𝗉 with the same assumptions on the set of atoms because
𝖯𝗈𝗉 is also bicartesian. We obtain that𝗆𝗐𝖽(𝑓 ) ≤ 𝑚 + 1 = min{𝑚, 𝑛} + 1 because 𝑚 < 𝑛.3. If 0 < 𝑚 = 𝑛 = 𝑘, 𝑓 can be decomposed as in Case 1 (or Case 2) and, instead of applying the inductionhypothesis to bound 𝗆𝗐𝖽(ℎ1) and 𝗆𝗐𝖽(ℎ2), one applies Case 2 (or Case 1). Then, 𝗆𝗐𝖽(𝑓 ) ≤ 𝑚 + 1 =
min{𝑚, 𝑛} + 1 because 𝑚 = 𝑛.

Lemma 3.23. The monoidal width of a morphism 𝑓 ∶ 𝑛 → 𝑚 in a bicartesian prop 𝖯 is bounded by its rank:
𝗆𝗐𝖽𝑓 ≤ 𝗋𝗄(𝑓 ) + 1. Moreover, if 𝑓 is not⊗-decomposable, i.e. there are no 𝑓1, 𝑓2 both distinct from 𝑓 suchthat 𝑓 = 𝑓1 ⊗ 𝑓2, then also𝗆𝗐𝖽𝑓 ≥ 𝗋𝗄(𝑓 ).
Proof. For the first inequality, observe that there is a monoidal decomposition 𝑑 = ((𝑔)— #𝑘 —(ℎ)) of 𝑓attaining the minimum of 𝑘 = 𝗋𝗄(𝑓 ). By Proposition 3.22, there are monoidal decompositions 𝑑1 and 𝑑2 of
𝑔 and ℎ whose width is bounded by their boundaries and, as a consequence, by the rank of 𝑓 .

𝗐𝖽(𝑑1) 𝗐𝖽(𝑑2)
≤ min{𝑛, 𝑘} + 1 ≤ min{𝑘, 𝑚} + 1
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= 𝑘 + 1 = 𝑘 + 1

By definition of monoidal width and weight function,
𝗆𝗐𝖽(𝑓 )
≤ 𝗐𝖽(𝑑)
∶= max{𝗐𝖽(𝑑1), 𝑘,𝗐𝖽(𝑑2)}
≤ max{𝑘 + 1, 𝑘, 𝑘 + 1}
= 𝗋𝗄(𝑓 ) + 1

For the second inequality, suppose that there are no non-trivial 𝑓1, 𝑓2 such that 𝑓 = 𝑓1 ⊗ 𝑓2. This meansthat there are no monoidal decompositions of 𝑓 that start with a monoidal product node, (𝑑1— ⊗—𝑑2),and that all monoidal decompositions of 𝑓 must either start with a composition node, (𝑑1— #𝑘 —𝑑2), or bea leaf, (𝑓 ). Then,
𝗆𝗐𝖽(𝑓 )
∶= min

𝑑∈𝐷𝑓
𝗐𝖽(𝑑)

≥ min{𝑘 ∈ ℕ ∶ 𝑓 = 𝑔 #𝑘 ℎ}
∶=𝗋𝗄(𝑓 )

From Corollary 3.21 and Lemma 3.23, we construct a minimal monoidal decomposition of morphisms inprops with a zero object.
Theorem3.24. Let𝑓 beamorphism in a prop𝖯where 0 is a zero object. Then,𝑓 has a unique⊗-decomposition
𝑓 = 𝑓1⊗…⊗𝑓𝑘 and itsmonoidalwidth is, up to 1, themaximumof the ranks of its factors,max𝑖=1,…,𝑘 𝗋𝗄(𝑓𝑖) ≤
𝗆𝗐𝖽(𝑓 ) ≤ max𝑖=1,…,𝑘 𝗋𝗄(𝑓𝑖) + 1.
Proof. By Lemma 3.23, there aremonoidal decompositions 𝑑𝑖 of𝑓𝑖 of rank-boundedwidth,𝗐𝖽(𝑑𝑖) ≤ 𝗋𝗄(𝑓𝑖)+
1. We use these to define a decomposition 𝑑 of 𝑓 , 𝑑 = (𝑑1— ⊗ —⋯ (𝑑𝑘−1— ⊗ —𝑑𝑘)), whose width is
𝗐𝖽(𝑑)∶= max𝑖=1,…,𝑘 𝗐𝖽(𝑑𝑖) ≤ max𝑖=1,…,𝑘 𝗋𝗄(𝑓𝑖) + 1.By Lemma 3.20, the factors 𝑓𝑖 are not⊗-decomposable. Then, the decompositions 𝑑𝑖 are minimal and
𝗆𝗐𝖽(𝑓𝑖) = 𝗐𝖽(𝑑𝑖) ≥ 𝗋𝗄(𝑓𝑖). By Proposition 3.19, the decomposition 𝑑 is also minimal and 𝗆𝗐𝖽(𝑓 ) ≥
𝗐𝖽(𝑑) = max𝑖=1,…,𝑘 𝗋𝗄(𝑓𝑖).





Chapter 4

Interlude: Two Perspectives on Graphs

Graphs and their homomorphisms form a monoidal category (Example 2.3), but not the one we will be con-cerned with. Our interest is in decomposing graphs as morphisms and we will instantiate monoidal width intwo categorical algebras of graphs. Cospans of graphs are a well-known algebra for composing graphs alongsome shared vertices. Section 4.1 recalls cospans of hypergraphs and relational structures, and their syntacticpresentation based on special Frobenius monoids [RSW05; BSS18]. Section 4.3 introduces the less-knownalgebra of graphs where the boundaries are “dangling edges” [CS15; DHS21] that allow graphs to be com-posed by connecting their boundary edges. Here, adjacency matrices encode the connectivity informationof graphs and the syntactic presentation of thismonoidal category of graphs relies on that ofmatrices [Zan15;Bon+19b], which we recall in Section 4.2.These categorical algebras give canonical choices for the operations defining tree width and cliquewidth,which we recalled in Sections 2.2 and 2.3. We derive these operations from compositions and monoidalproducts in cospans of hypergraphs and graphs with dangling edges, respectively.

4.1 Cospans of hypergraphs and relational structures

Cospans give an algebraic structure to compose systems along shared boundaries. Together with their dualalgebra of spans, they are natural examples of Katis, Sabadini andWalters’ bicategories of processes [KSW97a],where cospans and spans of sets and graphs model transition systems and automata [KSW97b; Kat+00;KSW04; RSW04]. Gadducci and Heckel’s axiomatisation of double pushout graph rewriting also relies oncospans for adding boundaries to graphs [GH97; GHL99]. More recently, cospans of graphs and variationsof them have been applied to modelling “open” processes like Petri nets [Fon15; BP17; BM20] and Markovprocesses [BFP16; CHP17].In most of these applications, the boundaries do not retain all the computational information of thepart of the system they refer to, so the boundary objects are, usually, simpler than the objects that modelsystems. Thus, the algebra of cospans is often restricted to a full subcategory on “simple” or “discrete” ob-jects. This restriction can be mathematically justified with decorated [Fon15] and structured [FS07] cospans,or with free feedback monoidal categories [Bon+19a; Di +23], but, for this work, the most appropriate per-spective is the characterisation of discrete cospans of graphs as a free Frobenius monoid with an additionalgenerator [RSW05]. A very similar syntactic characterisation works more generally for discrete cospans ofrelational structures [BSS18]. This section reviews the category of relational structures, cospans of themand their syntactic presentation (Section 4.1). As anticipated in Example 2.22, graphs and hypergraphs areinstances of relational structures where the relational signature specifies the adjacency relations betweenvertices. Morphisms of relational structures are functions preserving the relations and, in the case of graphs
39
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and hypergraph, these are the usual graph and hypergraph homomorphisms.
Definition 4.1. For a relational signature 𝜏, a relational 𝜏-structure𝐺 is a finite set 𝑉 with an 𝛼𝑅-ary relation
𝑅𝐺 ⊆ 𝑉 𝛼𝑅 for each relational symbol𝑅 of arity 𝛼𝑅 in the signature 𝜏. Amorphism of relational 𝜏-structures
ℎ∶ 𝐺 → 𝐻 is a function ℎ∶ 𝑉𝐺 → 𝑉𝐻 that respects the relations: for all relational symbols (𝑅, 𝛼𝑅) ∈ 𝜏 andall lists of elements 𝑣1,… , 𝑣𝛼𝑅 ∈ 𝑉 ,

𝑅𝐺(𝑣1,… , 𝑣𝛼𝑅 ) ⇒ 𝑅𝐻 (ℎ(𝑣1),… , ℎ(𝑣𝛼𝑅 )) .

Relational structures and their morphisms form a monoidal category, where disjoint union gives the mo-noidal structure (Proposition 4.6). This category can be described concisely as a comma category [Law63].
Remark 4.2. Relational 𝜏-structures and their morphisms are the objects and morphisms of the commacategory (𝟙 ↓ 𝐓) for the identity functor and the functor𝐓∶ 𝖥𝗂𝗇𝖲𝖾𝗍 → 𝖥𝗂𝗇𝖲𝖾𝗍 defined by the pullback below.

𝐓(𝑉 ) 𝑉 ∗

𝜏 ℕ

⌟
𝗅𝖾𝗇𝗀𝗍𝗁

𝛼

Explicitly, elements of 𝐓(𝑉 ) are pairs (𝑅, (𝑣1,… , 𝑣𝛼𝑅 )) of a relational symbol 𝑅 and a list of length 𝛼𝑅 of
elements 𝑣1,… , 𝑣𝛼𝑅 ∈ 𝑉 . A relational structure is a function𝐺∶ 𝐸𝐺 → 𝐓(𝑉𝐺) and amorphism ℎ∶ 𝐺 → 𝐻
is a pair of functions ℎ𝐸 ∶ 𝐸𝐺 → 𝐸𝐻 and ℎ𝑉 ∶ 𝑉𝐺 → 𝑉𝐻 such that 𝐺 # 𝐓(ℎ𝑉 ) = ℎ𝐸 #𝐻 .

𝐸𝐺 𝐸𝐻

𝐓(𝑉𝐺) 𝐓(𝑉𝐻 )

ℎ𝐸

𝐺 𝐻
𝐓(ℎ𝑉 )

Proposition 4.3. Relational 𝜏-structures and their morphisms form a category 𝖲𝗍𝗋𝗎𝖼𝗍𝜏 .
Proof. As detailed in Remark 4.2, 𝖲𝗍𝗋𝗎𝖼𝗍𝜏 is also the comma category (𝟙 ↓ 𝐓) of the identity functor 𝟙𝖥𝗂𝗇𝖲𝖾𝗍and the functor 𝐓∶ 𝖥𝗂𝗇𝖲𝖾𝗍 → 𝖥𝗂𝗇𝖲𝖾𝗍. For a reference, see [Mac78, Section II.6].

Intuitively, a cospan is a system together with two boundary maps that identify the subsystems that cancommunicate with the environment. Composition of cospans allows them to be composed along commonsubstructures.
Definition 4.4. A cospan in a category 𝖢 is a pair of morphisms, the legs 𝑓 ∶ 𝑋 → 𝐸 and 𝑔∶ 𝑌 → 𝐸, in 𝖢that share the same codomain 𝐸, the head.

Cospans form a monoidal category when the base category has finite colimits [Bén67].
Proposition 4.5. When𝖢 has finite colimits, cospans form a symmetric monoidal category𝖢𝗈𝗌𝗉𝖺𝗇(𝖢)whoseobjects are the objects of 𝖢 and morphisms are cospans in 𝖢. More precisely, a morphism 𝑋 → 𝑌 in
𝖢𝗈𝗌𝗉𝖺𝗇(𝖢) is an equivalence class of cospans 𝑓 ∶ 𝑋 → 𝐸 ← 𝑌 ∶𝑔, up to isomorphism of the head ofthe cospan. The composition of 𝑓 ∶ 𝑋 → 𝐸 ← 𝑌 ∶𝑔 and ℎ∶ 𝑌 → 𝐹 ← 𝑍 ∶𝑙 is given by the pushout of 𝑔and ℎ. The monoidal product is given by component-wise coproducts.

Relational structures have finite colimits and there is a category of cospans of them.
Proposition 4.6. The category 𝖲𝗍𝗋𝗎𝖼𝗍𝜏 has all finite colimits.
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Proof. A comma category (𝐒 ↓ 𝐓) for two functors 𝐒∶ 𝖢 → 𝖤 and 𝐓∶ 𝖣 → 𝖤 has all finite colimits if 𝖢 and
𝖣 have all finite colimits and the functor 𝐒 preserves them (see [RB88, Section 5.2] for a proof). In our case,
𝖢 = 𝖣 = 𝖥𝗂𝗇𝖲𝖾𝗍, which has all finite colimits and 𝐒 = 𝟙 is the identity functor, which preserves colimits.Then, 𝖲𝗍𝗋𝗎𝖼𝗍𝜏 has all finite colimits.

This result ensures that we can consider the monoidal category of cospans of relational structures. Asmentioned at the beginning of this section, the boundaries do not need to carry all the computational infor-mation of a relational structure, but it is sufficient that they record which vertices are accessible from theenvironment. Thus, we restrict to discrete cospans of relational structures, the full subcategory of cospans ondiscrete objects, i.e. sets. The legs of such a cospan point to some vertices in the relational structure that arecalled sources as they play a similar role to the sources for graphs in Bauderon and Courcelle’s work [BC87].
Definition 4.7. The category 𝗌𝖲𝗍𝗋𝗎𝖼𝗍𝜏 of relational structures with sources is the full subcategory of the mo-noidal category 𝖢𝗈𝗌𝗉𝖺𝗇(𝖲𝗍𝗋𝗎𝖼𝗍𝜏 ) on discrete structures 𝐷∶ ∅ → 𝑋. Explicitly, morphisms are cospans offunctions 𝑙∶ 𝑋 → 𝑉 ← 𝑌 ∶𝑟 with an apex 𝜏-structure 𝐺∶ 𝐸𝐺 → 𝐓(𝑉𝐺).

Explicitly, the composition of two morphisms 𝑙𝐺 ∶ 𝑋 → 𝑉𝐺 ← 𝑌 ∶𝑟𝐺 and 𝑙𝐻 ∶ 𝑌 → 𝑉𝐻 ← 𝑍 ∶𝑟𝐻 in
𝗌𝖲𝗍𝗋𝗎𝖼𝗍𝜏 is the morphism 𝑙∶ 𝑋 → 𝑉𝐺 #𝑌 𝑉𝐻 ← 𝑍 ∶𝑟 defined by the pushout of 𝑟𝐺 and 𝑙𝐻 .

𝑉𝐺 #𝑌 𝑉𝐻

𝑉𝐺 𝑉𝐻

𝑋 𝑌 𝑍

⌟𝑖𝐺 𝑖𝐻

𝑙𝐺 𝑙𝐻𝑟𝐺 𝑟𝐻

The apex of the cospan, 𝑉𝐺 #𝑌 𝑉𝐻 , is the relational structure obtained by joining 𝑉𝐺 and 𝑉𝐻 and identifyingthe vertices that are the images of the same element of the boundary 𝑌 . The legs of the composite cospanextend the legs of the original cospans: 𝑙∶= 𝑙𝐺 # 𝑖𝐺 and 𝑟∶= 𝑟𝐻 # 𝑖𝐻 . Themonoidal product of twomorphisms
𝑙∶ 𝑋 → 𝑉 ← 𝑌 ∶𝑟 and 𝑙′ ∶ 𝑋′ → 𝑉 ′ ← 𝑌 ′ ∶𝑟′ is their component-wise coproduct: 𝑙 + 𝑙′ ∶ 𝑋 + 𝑋′ →
𝑉 + 𝑉 ′ ← 𝑌 + 𝑌 ′ ∶𝑟 + 𝑟′.Chapter 5 is dedicated to showing thatmonoidalwidth in the category 𝗌𝖲𝗍𝗋𝗎𝖼𝗍𝜏 is equivalent to treewidth.Since the tree width of a relational structure is the same as the tree width of its underlying hypergraph, it issufficient to prove that monoidal width in the category of discrete cospans of hypergraphs is equivalent totree width.
Definition 4.8. The category 𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗ has sets as objects and discrete cospans of hypergraphsas morphisms. It is equivalent to the category 𝗌𝖲𝗍𝗋𝗎𝖼𝗍𝜏ℎ𝑦𝑝 of discrete cospans of relational structures on the
relational signature 𝜏ℎ𝑦𝑝 for hypergraphs.
A syntax for relational structures

The skeleton of the category𝖢𝗈𝗌𝗉𝖺𝗇(𝖥𝗂𝗇𝖲𝖾𝗍) of cospans of finite sets and functions is isomorphic to the propgenerated by a special Frobenius monoid [Lac04, Section 5.4], whose generators and equations are in Fig-ure 4.1. The syntactic presentation of discrete cospans of relational structures builds on this characterisationand only adds a generator for each relational symbol 𝑅 in the relational signature 𝜏.
Definition 4.9. The category 𝗌𝖥𝗋𝗈𝖻 is the prop generated by a special Frobenius monoid, whose generatorsand equations are in Figure 4.1.
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= = =

= = =

= =

Figure 4.1: Generators and equations for a special Frobenius monoid.

Proposition 4.10 ([Lac04]). The skeleton of 𝖢𝗈𝗌𝗉𝖺𝗇(𝖥𝗂𝗇𝖲𝖾𝗍) is isomorphic to the prop 𝗌𝖥𝗋𝗈𝖻 generated by aspecial Frobenius monoid.
The prop of relational structures with sources is obtained by freely adding a generator 𝖾𝑅 ∶ 𝛼𝑅 → 0 foreach (𝑅, 𝛼𝑅) ∈ 𝜏 to the prop 𝗌𝖥𝗋𝗈𝖻.

Definition 4.11. Given a relational signature 𝜏, the category 𝖫𝖧𝖾𝖽𝗀𝖾𝜏 is the free prop generated by a “labelledhyperedge” generator 𝖾𝑅 ∶ 𝛼𝑅 → 0 for every relational symbol𝑅 of arity 𝛼𝑅 in the signature 𝜏 (Figure 4.2).
𝑅𝛼𝑅 ⋮ for every (𝑅, 𝛼𝑅) ∈ 𝜏

Figure 4.2: The labelled hyperedge generators.

Definition 4.12. For a relational signature 𝜏, the prop 𝗌𝖥𝗋𝗈𝖻𝜏∶= 𝗌𝖥𝗋𝗈𝖻+𝖫𝖧𝖾𝖽𝗀𝖾𝜏 is the coproduct of the prop
𝗌𝖥𝗋𝗈𝖻 generated by a special Frobenius monoid and the prop 𝖫𝖧𝖾𝖽𝗀𝖾𝜏 generated by the labelled hyperedgesin 𝜏.

The relational signature for graphs 𝜏𝑔𝑟 contains a single symbol and morphisms in 𝗌𝖥𝗋𝗈𝖻𝜏𝑔𝑟 aregraphs with sources.
Example 4.13. The 3-clique with one source and the 3-star with one source are morphisms 1 → 0 in 𝗌𝖥𝗋𝗈𝖻𝜏𝑔𝑟 .

⇝ ⇝

Remark 4.14. We can impose additional equations to 𝗌𝖥𝗋𝗈𝖻𝜏 to constrain the behaviour of some relationalsymbols. For a symmetric relational symbol 𝑅, we impose that 𝑝 # 𝖾𝑅 = 𝖾𝑅, for every permutation 𝑝 of the
𝛼𝑅 inputs of 𝖾𝑅.

𝑅𝛼𝑅 ⋮𝑝⋮ ⋮ = 𝑅𝛼𝑅 ⋮
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If wewant to impose that theremay not be parallel edges of the same type𝑅, we add that 𝛼𝑅 #(𝖾𝑅⊗𝖾𝑅) =
𝖾𝑅.

𝑅𝛼𝑅 ⋮

𝑅𝛼𝑅 ⋮

⋮ = 𝑅𝛼𝑅 ⋮

The prop 𝗌𝖥𝗋𝗈𝖻𝜏 is a syntax for relational structures with sources [BSS18]. This result relies on previ-ous characterisations of the category of discrete cospans of graphs with Frobenius monoids [GH97; GHL99;RSW05].
Theorem 4.15 ([BSS18, Theorem 31]). The category 𝗌𝖲𝗍𝗋𝗎𝖼𝗍𝜏 of 𝜏-structures with sources is isomorphic to thefree special Frobenius prop 𝗌𝖥𝗋𝗈𝖻𝜏 on the signature 𝜏.
The operations for tree width

This section takes theoperations for treewidth ofDefinition 2.53 introducedbyBauderon andCourcelle [BC87;Cou90] and examines them through a categorical lens. We derive these operations from compositions andmonoidal products in the category 𝗌𝖥𝗋𝗈𝖻𝜏 of relational structures with sources. This correspondence definesinductively a function from structures with 𝑛 constants to morphisms of type 𝑛 → 0 in 𝗌𝖥𝗋𝗈𝖻𝜏 , which mapsa structure (𝐺, 𝑐) with 𝑛 constants to the morphism 𝑔∶ 𝑛 → 0 in 𝗌𝖥𝗋𝗈𝖻𝜏 that corresponds to the discretecospan of structures 𝑔 = 𝑐 ∶ 𝑛→ 𝐺 ← 0 ∶¡1.The categorical structure clarifies the relationships between all the slightly different versions of the oper-ations for tree width [BC87; Cou90; CM02]. While it is not difficult to check, with their usual definitions, thatthese different variations are equivalent, this becomes even more apparent when seen from the categoricalperspective. This perspective also gives canonicity to one choice: the operations that define tree width arecomposition andmonoidal product in themonoidal category of relational structures with sources. Chapter 5is devoted to prove this in detail.The generating structures of the algebraic tree decompositions correspond to specific morphisms in
𝗌𝖥𝗋𝗈𝖻𝜏 . The empty structure with no constants ∅ is the identity morphism on the monoidal unit 𝟙𝐼 , andthe structure 𝖾𝑅 with 𝛼𝑅 constants is the generator 𝖾𝑅 ∶ 𝛼𝑅 → 0.

∅ → and 𝖾𝑅 → 𝑅𝛼𝑅 ⋮

The operations are derived from the categorical structure. The disjoint union (𝐺, 𝑐)+(𝐻, 𝑑) of structures
(𝐺, 𝑐)with𝑚 constants and (𝐻, 𝑑)with 𝑛 constants is theirmonoidal product asmorphisms 𝑔⊗ℎ∶ 𝑚+𝑛→ 0.

(𝐺, 𝑐) + (𝐻, 𝑑) →

𝑔

ℎ

𝑚

𝑛

The redefinition of constants 𝖱𝖾𝗅𝖺𝖻𝑛𝑓 (𝐺, 𝑐) by a function 𝑓 is obtained by precomposing the correspondingmorphism 𝑔 with the cospan 𝑓 ∶ 𝑚 → 𝑛 ← 𝑛 ∶𝟙. This cospan is composed only of the monoid operations,i.e. it is covariantly lifted from the function 𝑓 ∶ 𝑚→ 𝑛.
𝖱𝖾𝗅𝖺𝖻𝑛𝑓 (𝐺, 𝑐) → 𝑔𝑓𝑚

𝑛

1We indicate with ¡𝐴 ∶ 0 → 𝐴 the unique morphism from the initial object 0 to an object𝐴. Similarly, we indicate with !𝐴 ∶ 𝐴 → 1the unique morphism from an object 𝐴 to the terminal object 1
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Similarly, the fusion of the constants 𝑖 and 𝑗, 𝖥𝗎𝗌𝖾𝑛𝑖,𝑗(𝐺, 𝑐), is obtained by precomposing with the cospan
𝑑𝗈𝗉𝑖,𝑗 = 𝟙 ∶ 𝑛 → 𝑛 ← 𝑛 + 1 ∶𝑑𝑖,𝑗 . This cospan is contravariantly lifted from the function 𝑑𝑖,𝑗 ∶ 𝑛 + 1 → 𝑛
defined as 𝑑𝑖,𝑗(𝑘) = 𝑘 if 𝑘 < 𝑗, 𝑑𝑖,𝑗(𝑗) = 𝑖 and 𝑑𝑖,𝑗(𝑘) = 𝑘 − 1 if 𝑘 > 𝑗. The cospan 𝑑𝗈𝗉𝑖,𝑗 is composed only of
symmetries and a copy morphism that joins the 𝑖𝑡ℎ and 𝑗𝑡ℎ outputs.

𝖥𝗎𝗌𝖾𝑛𝑖,𝑗(𝐺, 𝑐) → 𝑔𝑑𝗈𝗉𝑖,𝑗𝑛 + 1
𝑛 where 𝑑𝗈𝗉𝑖,𝑗∶=

𝑖𝑡ℎ
𝑖𝑡ℎ

𝑗𝑡ℎ

⋮

⋮

⋮

⋮

⋮

⋮

The addition of a constant 𝑖,𝖵𝖾𝗋𝗍𝑛𝑖(𝐺, 𝑐) is also a precomposition. We compose the cospan 𝑎𝗈𝗉𝑖 = 𝟙 ∶ 𝑛+1 →
𝑛+1 ← 𝑛 ∶𝑎𝑖 with themorphism 𝑔 that corresponds to the structure (𝐺, 𝑐). As with the fusion of constants,the cospan 𝑎𝗈𝗉𝑖 is contravariantly lifted from the function 𝑎𝑖 ∶ 𝑛 → 𝑛 + 1 defined as 𝑎𝑖(𝑘) = 𝑘 if 𝑘 < 𝑖 and
𝑎𝑖(𝑘) = 𝑘 + 1 if 𝑘 ≥ 𝑖. The cospan 𝑎𝗈𝗉𝑖 is composed only of identities and one discard morphism on the 𝑖𝑡ℎinput.

𝖵𝖾𝗋𝗍𝑛𝑖(𝐺, 𝑐) → 𝑔𝑎𝗈𝗉𝑖𝑛
𝑛 + 1 where 𝑎𝗈𝗉𝑖 ∶= 𝑖𝑡ℎ

⋮

⋮

⋮

⋮

The operations of redefinition, fusion and addition of constants together are as expressive as the op-eration of precomposition with edge-less morphisms in 𝗌𝖥𝗋𝗈𝖻𝜏 . In fact, these operations can construct allmorphisms 𝑛→ 0 in the monoidal category of relational structures with sources.

4.2 Matrices
Matrices over the natural numbers are often used to encode the adjacency relation of graphs and are thebasis for the graph algebra presented in Section 4.3. This section recalls Proposition 4.18, a result that char-acterises the algebra of matrices in terms of the generators and equations of a bialgebra (Figure 4.3). Thecharacterisation of the algebra of graphs in Section 4.3, Theorem 4.44, relies on this result.Matrices are the morphisms of a prop.
Definition 4.16. The category of matrices 𝖬𝖺𝗍ℕ is the prop whose morphisms 𝑛 → 𝑚 are 𝑚 by 𝑛 matrices.Composition is the usual product of matrices and the monoidal product is the biproduct of matrices 𝐴 ⊕
𝐵∶=

( 𝐴 𝟘
𝟘 𝐵

).
A syntax for matrices

The syntax for the prop of matrices is given by a commutative monoid ( , ), interpreted as adding andzero, and a cocommutative comonoid ( , ), interpreted as copying and discarding. These interact ac-cording to the laws of a bialgebra.
Definition 4.17. The prop 𝖡𝗂𝖺𝗅𝗀 is freely generated by a bialgebra, whose generators and equations are givenin Figure 4.3.

The free prop generated by a bialgebra is isomorphic to the prop of matrices. Proofs of this result can befound in Zanasi’s PhD thesis [Zan15, Proposition 3.9] and in [BSZ17, Proposition 3.7].
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= = =

= = =

= = = =

Figure 4.3: Generators and equations of a bialgebra.

Proposition 4.18 ([Zan15]). There is an isomorphism of categories𝐌𝐚𝐭 ∶ 𝖡𝗂𝖺𝗅𝗀 → 𝖬𝖺𝗍ℕ.
Every morphism 𝑓 ∶ 𝑛→ 𝑚 in 𝖡𝗂𝖺𝗅𝗀 corresponds to a matrix𝐴 = 𝐌𝐚𝐭(𝑓 ) ∈ 𝖬𝖺𝗍ℕ(𝑚, 𝑛): we can read the

(𝑖, 𝑗)-entry of𝐴 off the diagram of 𝑓 by counting the number of paths directed from the 𝑗-th input to the 𝑖-thoutput. These paths do not include paths that “go back” through a multiplication or comultiplication node.
Example 4.19. The matrix 𝐴 =

( 1 0
1 2
0 0

)

∈ 𝖬𝖺𝗍ℕ(3, 2) corresponds to the morphism 𝑎∶ 2 → 3 below. The
columns are the inputs and the rows are the outputs: the two distinct paths from the second input to thesecond output and the absence of paths from the same input to the third output are recorded by a 2 in theentry (2, 2) and a 0 in the entry (3, 2) of the matrix 𝐴.

𝑎 =

Remark 4.20. By Theorem 3.24, the monoidal width of a matrix 𝐴 = 𝐴1 ⊕⋯⊕ 𝐴𝑏 is the maximal rank ofits blocks,
𝗆𝗐𝖽(𝐴) = max

𝑖=1,…,𝑏
𝗋𝗄(𝐴𝑖) ,

because the monoidal unit 0 is also a zero object.

4.3 Graphs with dangling edges
This section introduces the prop of graphswith dangling edges. Morphisms represent graphswith additional“dangling edges” and composition joins two graphs by connecting their dangling edges. We define this alge-bra explicitly (Definition 4.25) and give an equivalent syntactic presentation (Definition 4.42). We show theirisomorphism by finding a normal form for morphisms in the syntactic presentation. The diagram below sum-marises the proof strategy: Proposition 4.30 shows that the prop of graphs with dangling edges,𝖬𝖦𝗋𝖺𝗉𝗁, isthe coproduct of a prop of adjacency matrices,𝖬𝖠𝖽𝗃, and a prop of bounded permutations, 𝖻𝗈𝗎𝗇𝖽𝖯; Theo-rem4.39 and Proposition 4.41 give equivalent syntactic descriptions of adjacencymatrices,𝖠𝖽𝗃, and bounded
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permutations, 𝖵𝖾𝗋𝗍, based on the bialgebra characterisation of matrices; finally, the syntactic presentationof graphs with dangling edges is defined as their coproduct, 𝖡𝖦𝗋𝖺𝗉𝗁∶= 𝖠𝖽𝗃 + 𝖵𝖾𝗋𝗍.

𝖬𝖠𝖽𝗃 𝖬𝖦𝗋𝖺𝗉𝗁 𝖻𝗈𝗎𝗇𝖽𝖯

𝖠𝖽𝗃 𝖡𝖦𝗋𝖺𝗉𝗁 𝖵𝖾𝗋𝗍

𝜄1

Theorem 4.39 Theorem 4.44
𝜄2

Proposition 4.41

The algebra of graphswith dangling edges relies on adjacencymatrices to encode the connectivity of vertices.These are matrices quotiented by an equivalence relation that captures that there are different ways ofexpressing the same connectivity information: if there are two edges between vertices 𝑖 and 𝑗 of a graph𝐺,then this can be recorded in the entry (𝑖, 𝑗) or (𝑗, 𝑖) as long as their sum is 2.
Definition 4.21. An adjacency matrix [𝐺] is an equivalence class of square matrices 𝐺 ∈ 𝖬𝖺𝗍ℕ(𝑚,𝑚) overthe natural numbers, where the equivalence relation is [𝐺] = [𝐻] iff 𝐺 + 𝐺⊤ = 𝐻 +𝐻⊤.

Adjacency matrices on 𝑚 vertices are the morphisms 0 → 𝑚 of a prop where generic morphisms repre-sent adjacency matrices “with inputs”. These are an adjacency matrix together with a matrix of compatibledimensions that connects the inputs to the adjacency matrix. This prop is defined in [CS15], where it givesan algebra for simple graphs. Our graph algebra captures multi-graphs but follows a similar idea.
Proposition 4.22 ([CS15]). There is a prop𝖬𝖠𝖽𝗃 where morphisms 𝛼∶ 𝑛→ 𝑚 are pairs 𝛼 = (𝐵, [𝐺]) of an 𝑚by 𝑛matrix 𝐵 ∈ 𝖬𝖺𝗍ℕ(𝑚, 𝑛) and an 𝑚 by 𝑚 adjacency matrix [𝐺].
Proof. The composition of two morphisms (𝐵, [𝐺])∶ 𝑛 → 𝑚 and (𝐶, [𝐻])∶ 𝑚 → 𝑙 is defined as (𝐵, [𝐺]) #
(𝐶, [𝐻])∶= (𝐶 ⋅𝐵,

[

𝐶 ⋅ 𝐺 ⋅ 𝐶⊤ +𝐻
]

)∶ 𝑛→ 𝑙. The identity on 𝑛 is (𝟙𝑛, [𝟘]). Themonoidal product on objects
is addition, while onmorphisms it is the component-wise biproduct ofmatrices, (𝐵, [𝐺])⊗(𝐵′,

[

𝐺′])∶= (𝐵⊕
𝐵′,

[

𝐺 ⊕𝐺′]), with monoidal unit 0. Composition is well-defined on equivalence classes of adjacency ma-
trices. Suppose (𝐵, [𝐺]) = (𝐵,

[

𝐺′]) and (𝐶, [𝐻]) = (𝐶,
[

𝐻 ′]). This means that 𝐺 + 𝐺⊤ = 𝐺′ + (𝐺′)⊤ and
𝐻 +𝐻⊤ = 𝐻 ′ + (𝐻 ′)⊤.

(𝐶𝐺𝐶⊤ +𝐻) + (𝐶𝐺𝐶⊤ +𝐻)⊤

= 𝐶𝐺𝐶⊤ + 𝐶𝐺⊤𝐶⊤ +𝐻 +𝐻⊤

= 𝐶(𝐺 + 𝐺⊤)𝐶⊤ +𝐻 +𝐻⊤

= 𝐶(𝐺′ + (𝐺′)⊤)𝐶⊤ +𝐻 ′ + (𝐻 ′)⊤

= 𝐶𝐺′𝐶⊤ + 𝐶(𝐺′)⊤𝐶⊤ +𝐻 ′ + (𝐻 ′)⊤

= (𝐶𝐺′𝐶⊤ +𝐻 ′) + (𝐶𝐺′𝐶⊤ +𝐻 ′)⊤

Then, composition preserves equivalence of adjacency matrices.
(𝐵, [𝐺]) # (𝐶, [𝐻])

∶= (𝐶 ⋅ 𝐵,
[

𝐶 ⋅ 𝐺 ⋅ 𝐶⊤ +𝐻
]

)

= (𝐶 ⋅ 𝐵,
[

𝐶 ⋅ 𝐺′ ⋅ 𝐶⊤ +𝐻 ′])
∶=(𝐵,

[

𝐺′]) # (𝐶,
[

𝐻 ′])

For the monoidal product, it is easier to see that it preserves equivalence of adjacency matrices because, if
𝐺 +𝐺⊤ = 𝐺′ + (𝐺′)⊤ and𝐻 +𝐻⊤ = 𝐻 ′ + (𝐻 ′)⊤, then (𝐺⊕𝐻) + (𝐺⊕𝐻)⊤ = (𝐺′⊕𝐻 ′) + (𝐺′⊕𝐻 ′)⊤.
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For (𝐴, [𝐹 ])∶ 𝑝→ 𝑛, (𝐵, [𝐺])∶ 𝑛→ 𝑚 and (𝐶, [𝐻])∶ 𝑚→ 𝑙, we show that composition is associative.

((𝐴, [𝐹 ]) # (𝐵, [𝐺])) # (𝐶, [𝐻]) (𝐴, [𝐹 ]) # ((𝐵, [𝐺]) # (𝐶, [𝐻]))

= (𝐵𝐴,
[

𝐵𝐹𝐵⊤ + 𝐺
]

) # (𝐶, [𝐻]) = (𝐴, [𝐹 ]) # (𝐶𝐵,
[

𝐶𝐺𝐶⊤ +𝐻
]

)

= (𝐶𝐵𝐴,
[

𝐶(𝐵𝐹𝐵⊤ + 𝐺)𝐶⊤ +𝐻
]

) = (𝐶𝐵𝐴,
[

𝐶𝐵𝐹 (𝐶𝐵)⊤ + 𝐶𝐺𝐶⊤ +𝐻
]

)

= (𝐶𝐵𝐴,
[

𝐶𝐵𝐹 (𝐶𝐵)⊤ + 𝐶𝐺𝐶⊤ +𝐻
]

)

For (𝐵, [𝐺])∶ 𝑛→ 𝑚, we show that composition is unital.
(𝐵, [𝐺]) # (𝟙𝑚, [𝟘]) (𝟙𝑛, [𝟘]) # (𝐵, [𝐺])

= (𝟙𝑚 ⋅ 𝐵,
[

𝟙𝑚 ⋅ 𝐺 ⋅ 𝟙⊤𝑚 + 𝟘
]

) = (𝐵 ⋅ 𝟙𝑛,
[

𝐵 ⋅ 𝟘 ⋅ 𝐵⊤ + 𝐺
]

)
= (𝐵, [𝐺]) = (𝐵, [𝐺])

For (𝐵, [𝐺])∶ 𝑛 → 𝑚, (𝐶, [𝐻])∶ 𝑚 → 𝑙, (𝐵′,
[

𝐺′])∶ 𝑛′ → 𝑚′ and (𝐶 ′,
[

𝐻 ′])∶ 𝑚′ → 𝑙′, we show that themonoidal product preserves their composition.
((𝐵, [𝐺])⊗ (𝐵′,

[

𝐺′])) # ((𝐶, [𝐻])⊗ (𝐶 ′,
[

𝐻 ′]))
= (𝐵 ⊕ 𝐵′,

[

𝐺 ⊕𝐺′]) # (𝐶 ⊕ 𝐶 ′,
[

𝐻 ⊕𝐻 ′])

= ((𝐶 ⊕ 𝐶 ′)(𝐵 ⊕ 𝐵′),
[

(𝐶 ⊕ 𝐶 ′)(𝐺 ⊕𝐺′)(𝐶 ⊕ 𝐶 ′)⊤ + (𝐻 ⊕𝐻 ′)
]

)

= ((𝐶𝐵)⊕ (𝐶 ′𝐵′),
[

(𝐶𝐺𝐶⊤)⊕ (𝐶 ′𝐺′𝐶 ′⊤) + (𝐻 ⊕𝐻 ′)
]

)

= ((𝐶𝐵)⊕ (𝐶 ′𝐵′),
[

(𝐶𝐺𝐶⊤ +𝐻)⊕ (𝐶 ′𝐺′(𝐶 ′)⊤ +𝐻 ′)
]

)

= (𝐶𝐵,
[

𝐶𝐺𝐶⊤ +𝐻
]

)⊗ (𝐶 ′𝐵′,
[

𝐶 ′𝐺′(𝐶 ′)⊤ +𝐻 ′])
= ((𝐵, [𝐺]) # (𝐶, [𝐻]))⊗ ((𝐵′,

[

𝐺′]) # (𝐶 ′,
[

𝐻 ′]))

The monoidal product preserves identities.
(𝟙𝑛, [𝟘])⊕ (𝟙𝑛′ , [𝟘])
= (𝟙𝑛 ⊕ 𝟙𝑛′ , [𝟘⊕ 𝟘])
= (𝟙𝑛+𝑛′ , [𝟘])

The monoidal product is associative and unital because the objects are natural numbers and the monoidalproduct is addition.
The ordering of vertices in a graph is immaterial, but adjacency matrices fix one. Graphs are adjacencymatrices where the vertices can be arbitrarily permuted, so they are obtained by adding to the prop ofadjacency matrices the possibility of permuting some of the wires, those connected to the vertices. Weintroduce the prop of bounded permutations to capture this aspect: morphisms are permutations wheresome of the outputs can be freely permuted.

Definition 4.23. A bounded permutation 𝑝 = (𝑘, 𝑃 ) is a pair of a natural number 𝑘 ∈ ℕ and a permutationmatrix 𝑃 ∈ 𝖬𝖺𝗍ℕ(𝑚 + 𝑘, 𝑚 + 𝑘). Two bounded permutations 𝑝 = (𝑘, 𝑃 ) and 𝑞 = (𝑘,𝑄) are equivalent if
there is a permutation 𝜎 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑘) such that 𝑃 =

(

𝟙𝑚 𝟘
𝟘 𝜎

)

⋅𝑄.
In a bounded permutation (𝑘, 𝑃 ), the number 𝑘 gives the number of outputs that are “bounded” andcan, thus, be permuted without changing the morphism. Bounded permutations are the morphisms of aprop.
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Proposition 4.24. Bounded permutations form a prop 𝖻𝗈𝗎𝗇𝖽𝖯 where morphisms 𝑝∶ 𝑚 + 𝑘 → 𝑚 are equiv-alence classes of bounded permutations 𝑝 = (𝑘, 𝑃 ).
Proof. The composition of two bounded permutations (𝑘, 𝑃 )∶ 𝑚 + 𝑗 + 𝑘 → 𝑚 + 𝑗 and (𝑗, 𝑄)∶ 𝑚 + 𝑗 → 𝑚is defined as (𝑘, 𝑃 ) # (𝑗, 𝑄)∶= (𝑘 + 𝑗, (𝑄 ⊕ 𝟙𝑘) ⋅ 𝑃 ), and the identity morphism on 𝑚 is (0, 𝟙𝑚)∶ 𝑚 → 𝑚.The monoidal product on objects is addition, the monoidal unit is 0 and, for two bounded permutations
(𝑘, 𝑃 )∶ 𝑚+𝑘→ 𝑚 and (𝑘′, 𝑃 ′)∶ 𝑚′ +𝑘′ → 𝑚′, their monoidal product is (𝑘, 𝑃 )⊗ (𝑘′, 𝑃 ′)∶= (𝑘+𝑘′, (𝟙𝑚⊕
𝜎𝑘,𝑚′⊕𝟙𝑘′ )⋅(𝑃⊕𝑃 ′)), where 𝜎𝑘,𝑚′ is the permutationmatrix that swaps the first 𝑘 inputs with the remaining
𝑚′ inputs. Thanks to the string diagrammatic syntax for matrices, the permutation matrices associated to acomposition and a monoidal product are, in string diagrams,

𝑃 𝑄𝑚
𝑗
𝑘

𝑚
𝑗
𝑘

𝑃

𝑃 ′

𝑚
𝑘

𝑚′

𝑘′

𝑚
𝑚′

𝑘
𝑘′

With this, it easy to see that composition is associative and unital. Composition is well-defined because, if
(𝑘, 𝑃 ) = (𝑘, 𝑃 ′) and (𝑗, 𝑄) = (𝑗, 𝑄′), then 𝑃 = (𝟙𝑚+𝑗 ⊕ 𝜎) ⋅ 𝑃 ′,𝑄 = (𝟙𝑚 ⊕ 𝜏) ⋅𝑄′,

𝑃 𝑄𝑚
𝑗
𝑘

𝑚
𝑗
𝑘

= 𝑃 ′

𝜎
𝑄′

𝜏
𝑚
𝑗
𝑘

𝑚
𝑗
𝑘

= 𝑃 ′ 𝑄′

𝜎
𝜏

𝑚
𝑗
𝑘

𝑚
𝑗
𝑘

and (𝟙𝑘⊕𝑄′)⋅𝑃 ′ = (𝟙𝑚⊕𝜏⊕𝜎)⋅((𝟙𝑘⊕𝑄′)⋅𝑃 ′). So (𝑘, 𝑃 )#(𝑗, 𝑄) = (𝑘, 𝑃 ′)#(𝑗, 𝑄′). Themonoidal product isalso well-defined because, if (𝑘, 𝑃 ) = (𝑘, 𝑃 ′) and (𝑗, 𝑄) = (𝑗, 𝑄′), then 𝑃 = (𝟙𝑚⊕𝜎) ⋅𝑃 ′,𝑄 = (𝟙𝑛⊕𝜏) ⋅𝑄′,
𝑃

𝑄

𝑚
𝑘

𝑛
𝑗

𝑚
𝑛

𝑘
𝑗

=
𝑃 ′

𝑄′

𝜎

𝜏

𝑚
𝑘

𝑛
𝑗

𝑚
𝑛

𝑘
𝑗

=
𝑃 ′

𝑄′ 𝜎
𝜏

𝑚
𝑘

𝑛
𝑗

𝑚
𝑛

𝑘
𝑗

and (𝟙𝑚⊕𝜎𝑘,𝑛⊕𝟙𝑗)⋅(𝑃⊕𝑄) = (𝟙𝑚+𝑛⊕𝜎⊕𝜏)⋅(𝟙𝑚⊕𝜎𝑘,𝑛⊕𝟙𝑗)⋅(𝑃 ′⊕𝑄′). So (𝑘, 𝑃 )⊗(𝑗, 𝑄) = (𝑘, 𝑃 ′)⊗(𝑗, 𝑄′).Themonoidal product is a functor: ((𝑘, 𝑃 )⊗(𝑘′, 𝑃 ′))#((𝑗, 𝑄)⊗(𝑗′, 𝑄′)) = ((𝑘, 𝑃 )#(𝑗, 𝑄))⊗((𝑘′, 𝑃 ′)#(𝑗′, 𝑄′))because their matrices are equivalent up to permuting the “bounded wires”.
𝑃 𝑄𝑚

𝑗
𝑘

𝑃 ′ 𝑄′𝑚′

𝑗′
𝑘′

𝑚
𝑚′

𝑗
𝑘
𝑗′
𝑘′

≅
𝑃 𝑄𝑚

𝑗
𝑘

𝑃 ′ 𝑄′𝑚′

𝑗′
𝑘′

𝑚
𝑚′

𝑗
𝑗′
𝑘
𝑘′

=
𝑃 𝑄𝑚

𝑗
𝑘

𝑃 ′

𝑄′
𝑚′

𝑗′
𝑘′

𝑚
𝑚′

𝑗
𝑗′
𝑘
𝑘′

The monoidal product is strictly associative and unital because, on objects, it is addition of natural numbers.

Graphs with dangling edges inherit the algebra of adjacency matrices and mix it with that of boundedpermutations. In fact, Proposition 4.30 shows that the prop 𝖬𝖦𝗋𝖺𝗉𝗁 of graphs with dangling edges is thecoproduct of𝖬𝖠𝖽𝗃 and 𝖻𝗈𝗎𝗇𝖽𝖯. Graphswith dangling edges have three connectivity points: the left and rightboudaries, and the vertices. These are connected between each other and themselves with five matrices.
Definition 4.25. Graphs with dangling edges are tuples 𝑔 = ([𝐺] , 𝐿, 𝑅, 𝑃 , [𝑆]), where each matrix encodespart of the edges:• 𝐺 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑘) the edges of the graph, with 𝑘 the number of vertices;
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• 𝐿 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑛) the dangling edges to the left boundary;• 𝑅 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑚) the dangling edges to the right boundary;• 𝑃 ∈ 𝖬𝖺𝗍ℕ(𝑚, 𝑛) the passing edges from the left to the right boundary; and• 𝑆 ∈ 𝖬𝖺𝗍ℕ(𝑚,𝑚) the edges from the right boundary to itself.Two graphs with dangling edges 𝑔 = ([𝐺] , 𝐿, 𝑅, 𝑃 , [𝑆]) and 𝑔′ = ([

𝐺′] , 𝐿′, 𝑅′, 𝑃 ′,
[

𝑆′]) are equivalent ifthere is a permutation matrix 𝜎 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑘) such that
𝑔′ =

([

𝜎 ⋅ 𝐺 ⋅ 𝜎⊤
]

, 𝜎 ⋅ 𝐿, 𝜎 ⋅ 𝑅, 𝑃 , [𝑆]
)

.

The equivalence relation of graphs with dangling edges captures that the order of the vertices is imma-terial. Graphs with dangling edges can be composed and are the morphisms of a prop.
Proposition 4.26. Graphs with dangling edges form a prop𝖬𝖦𝗋𝖺𝗉𝗁where morphisms 𝑔∶ 𝑛→ 𝑚 are equiv-alence classes of graphs with dangling edges 𝑔 = ([𝐺] , 𝐿, 𝑅, 𝑃 , [𝑆]) as in Definition 4.25.
Proof. Given two graphs with dangling edges 𝑔∶ 𝑛 → 𝑚 and ℎ∶ 𝑚 → 𝑙, with 𝑔 =

(

[𝐺] , 𝐿𝑔 , 𝑅𝑔 , 𝑃𝑔 ,
[

𝑆𝑔
])

and ℎ =
(

[𝐻] , 𝐿ℎ, 𝑅ℎ, 𝑃ℎ,
[

𝑆ℎ
]), their composition 𝑔 # ℎ∶ 𝑛→ 𝑙 is

([(

𝐺 𝑅𝑔𝐿⊤ℎ
𝟘 𝐻+𝐿ℎ𝑆𝑔𝐿⊤ℎ

)]

,
( 𝐿𝑔
𝐿ℎ𝑃𝑔

)

,
(

𝑅𝑔𝑃⊤ℎ
𝑅ℎ+𝐿ℎ(𝑆𝑔+𝑆⊤𝑔 )𝑃

⊤
ℎ

)

, 𝑃ℎ𝑃𝑔 ,
[

𝑆ℎ + 𝑃ℎ𝑆𝑔𝑃⊤ℎ
]

)

.

Composition is associative.
(𝑓 # 𝑔) # ℎ

=
([(

𝐹 𝑅𝑓𝐿⊤𝑔
𝟘 𝐺+𝐿𝑔𝑆𝑓𝐿⊤𝑔

)]

,
( 𝐿𝑓
𝐿𝑔𝑃𝑓

)

,
(

𝑅𝑓𝑃⊤𝑔
𝑅𝑔+𝐿𝑔(𝑆𝑓+𝑆⊤𝑓 )𝑃

⊤
𝑔

)

, 𝑃𝑔𝑃𝑓 ,
[

𝑆𝑔 + 𝑃𝑔𝑆𝑓𝑃⊤𝑔
]

)

# ℎ

=
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

𝐹 𝑅𝑓𝐿⊤𝑔 𝑅𝑓𝑃⊤𝑔 𝐿
⊤
ℎ

𝟘 𝐺+𝐿𝑔𝑆𝑓𝐿⊤𝑔 (𝑅𝑔+𝐿𝑔(𝑆𝑓+𝑆⊤𝑓 )𝑃
⊤
𝑔 )𝐿⊤ℎ

𝟘 𝟘 𝐻+𝐿ℎ(𝑆𝑔+𝑃𝑔𝑆𝑓𝑃⊤𝑔 )𝐿⊤ℎ

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

,
( 𝐿𝑓

𝐿𝑔𝑃𝑓
𝐿ℎ𝑃𝑔𝑃𝑓

)

,
⎛

⎜

⎜

⎝

𝑅𝑓𝑃⊤𝑔 𝑃
⊤
ℎ

(𝑅𝑔+𝐿𝑔(𝑆𝑓+𝑆⊤𝑓 )𝑃
⊤
𝑔 )𝑃⊤ℎ

𝑅ℎ+𝐿ℎ(𝑆𝑔+𝑃𝑔𝑆𝑓𝑃⊤𝑔 +𝑆⊤𝑔 +𝑃𝑔𝑆
⊤
𝑓 𝑃

⊤
𝑔 )𝑃⊤ℎ

⎞

⎟

⎟

⎠

,

𝑃ℎ𝑃𝑔𝑃𝑓 ,
[

𝑆ℎ + 𝑃ℎ(𝑆𝑔 + 𝑃𝑔𝑆𝑓𝑃⊤𝑔 )𝑃
⊤
ℎ

]
⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

𝐹 𝑅𝑓𝐿⊤𝑔 𝑅𝑓𝑃⊤𝑔 𝐿
⊤
ℎ

𝟘 𝐺+𝐿𝑔𝑆𝑓𝐿⊤𝑔 (𝑅𝑔+𝐿𝑔𝑆𝑓𝑃⊤𝑔 )𝐿⊤ℎ
𝟘 𝐿ℎ𝑃𝑔𝑆𝑓𝐿⊤𝑔 𝐻+𝐿ℎ(𝑆𝑔+𝑃𝑔𝑆𝑓𝑃⊤𝑔 )𝐿⊤ℎ

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

,
( 𝐿𝑓

𝐿𝑔𝑃𝑓
𝐿ℎ𝑃𝑔𝑃𝑓

)

,
⎛

⎜

⎜

⎝

𝑅𝑓𝑃⊤𝑔 𝑃
⊤
ℎ

𝑅𝑔𝑃⊤ℎ +𝐿𝑔(𝑆𝑓+𝑆⊤𝑓 )𝑃
⊤
𝑔 𝑃

⊤
ℎ

𝑅ℎ+𝐿ℎ(𝑆𝑔+𝑆⊤𝑔 +𝑃𝑔(𝑆𝑓+𝑆
⊤
𝑓 )𝑃

⊤
𝑔 )𝑃⊤ℎ

⎞

⎟

⎟

⎠

,

𝑃ℎ𝑃𝑔𝑃𝑓 ,
[

𝑆ℎ + 𝑃ℎ𝑆𝑔𝑃⊤ℎ + 𝑃ℎ𝑃𝑔𝑆𝑓𝑃⊤𝑔 𝑃
⊤
ℎ

]
⎞

⎟

⎟

⎠

= 𝑓 #
([(

𝐺 𝑅𝑔𝐿⊤ℎ
𝟘 𝐻+𝐿ℎ𝑆𝑔𝐿⊤ℎ

)]

,
( 𝐿𝑔
𝐿ℎ𝑃𝑔

)

,
(

𝑅𝑔𝑃⊤ℎ
𝑅ℎ+𝐿ℎ(𝑆𝑔+𝑆⊤𝑔 )𝑃

⊤
ℎ

)

, 𝑃ℎ𝑃𝑔 ,
[

𝑆ℎ + 𝑃ℎ𝑆𝑔𝑃⊤ℎ
]

)

= 𝑓 # (𝑔 # ℎ)

Composition is unital.
𝑔 # 𝟙𝑚

=
([( 𝐺 𝑅𝑔 ¡𝑚!𝑚 ( )+!𝑚𝑆𝑔 ¡𝑚

)]

,
( 𝐿𝑔!𝑚𝑃𝑔

)

,
( 𝑅𝑔𝟙𝑚¡𝑚+!𝑚(𝑆𝑔+𝑆⊤𝑔 )𝟙𝑚

)

, 𝟙𝑚𝑃𝑔 ,
[

𝟘 + 𝟙𝑚𝑆𝑔𝟙𝑚
]

)
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=
(

[𝐺] , 𝐿𝑔 , 𝑅𝑔 , 𝑃𝑔 ,
[

𝑆𝑔
])

= 𝑔

𝟙𝑛 # 𝑔

=
([(

( ) !𝑛𝐿⊤𝑔¡𝑛 𝐺+𝐿𝑔𝟘𝐿⊤𝑔
)]

,
( !𝑛
𝐿𝑔𝟙𝑛

)

,
( !𝑛𝑃⊤𝑔
𝑅𝑔+𝐿𝑔𝟘𝑃⊤𝑔

)

, 𝑃𝑔𝟙𝑛,
[

𝑆𝑔 + 𝑃𝑔𝟘𝑃⊤𝑔
]

)

=
(

[𝐺] , 𝐿𝑔 , 𝑅𝑔 , 𝑃𝑔 ,
[

𝑆𝑔
])

= 𝑔

Given two morphisms 𝑔 = ([𝐺] , 𝐿, 𝑅, 𝑃 , [𝑆]) and 𝑔′ = ([

𝐺′] , 𝐿′, 𝑅′, 𝑃 ′,
[

𝑆′]), their monoidal productis
𝑔 ⊗ 𝑔′∶=

([

𝐺 ⊕𝐺′] , 𝐿 ⊕ 𝐿′, 𝑅 ⊕ 𝑅′, 𝑃 ⊕ 𝑃 ′,
[

𝑆 ⊕ 𝑆′]).

The monoidal product is functorial.
(𝑔 # ℎ)⊗ (𝑔′ # ℎ′)

=
([(

𝐺 𝑅𝑔𝐿⊤ℎ
𝟘 𝐻+𝐿ℎ𝑆𝑔𝐿⊤ℎ

)]

,
( 𝐿𝑔
𝐿ℎ𝑃𝑔

)

,
(

𝑅𝑔𝑃⊤ℎ
𝑅ℎ+𝐿ℎ(𝑆𝑔+𝑆⊤𝑔 )𝑃

⊤
ℎ

)

, 𝑃ℎ𝑃𝑔 ,
[

𝑆ℎ + 𝑃ℎ𝑆𝑔𝑃⊤ℎ
]

)

⊗
([(

𝐺′ 𝑅′
𝑔(𝐿

′
ℎ)
⊤

𝟘 𝐻 ′+𝐿′
ℎ𝑆

′
𝑔(𝐿

′
ℎ)
⊤

)]

,
(

𝐿′
𝑔

𝐿′
ℎ𝑃

′
𝑔

)

,
(

𝑅′
𝑔(𝑃

′
ℎ)
⊤

𝑅′
ℎ+𝐿

′
ℎ(𝑆

′
𝑔+(𝑆

′
𝑔)
⊤)(𝑃 ′

ℎ)
⊤

)

, 𝑃 ′
ℎ𝑃

′
𝑔 ,
[

𝑆′
ℎ + 𝑃

′
ℎ𝑆

′
𝑔(𝑃

′
ℎ)
⊤
]

)

=
([(

𝐺 𝑅𝑔𝐿⊤ℎ
𝟘 𝐻+𝐿ℎ𝑆𝑔𝐿⊤ℎ

)

⊕
(

𝐺′ 𝑅′
𝑔(𝐿

′
ℎ)
⊤

𝟘 𝐻 ′+𝐿′
ℎ𝑆

′
𝑔(𝐿

′
ℎ)
⊤

)]

,

( 𝐿𝑔
𝐿ℎ𝑃𝑔

)

⊕
(

𝐿′
𝑔

𝐿′
ℎ𝑃

′
𝑔

)

,
(

𝑅𝑔𝑃⊤ℎ
𝑅ℎ+𝐿ℎ(𝑆𝑔+𝑆⊤𝑔 )𝑃

⊤
ℎ

)

⊕
(

𝑅′
𝑔(𝑃

′
ℎ)
⊤

𝑅′
ℎ+𝐿

′
ℎ(𝑆

′
𝑔+(𝑆

′
𝑔)
⊤)(𝑃 ′

ℎ)
⊤

)

,

𝑃ℎ𝑃𝑔 ⊕ 𝑃 ′
ℎ𝑃

′
𝑔 ,
[

(𝑆ℎ + 𝑃ℎ𝑆𝑔𝑃⊤ℎ )⊕ (𝑆′
ℎ + 𝑃

′
ℎ𝑆

′
𝑔(𝑃

′
ℎ)
⊤)
]

)

=

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

𝜏

⎛

⎜

⎜

⎜

⎝

𝐺 𝟘 𝑅𝑔𝐿⊤ℎ 𝟘
𝟘 𝐺′ 𝟘 𝑅′

𝑔(𝐿
′
ℎ)
⊤

𝟘 𝟘 𝐻+𝐿ℎ𝑆𝑔𝐿⊤ℎ 𝟘
𝟘 𝟘 𝟘 𝐻 ′+𝐿′

ℎ𝑆
′
𝑔(𝐿

′
ℎ)
⊤

⎞

⎟

⎟

⎟

⎠

𝜏⊤
⎤

⎥

⎥

⎥

⎦

, 𝜏
⎛

⎜

⎜

⎝

𝐿𝑔 𝟘
𝟘 𝐿′

𝑔
𝐿ℎ𝑃𝑔 𝟘
𝟘 𝐿′

ℎ𝑃
′
𝑔

⎞

⎟

⎟

⎠

, 𝜏

⎛

⎜

⎜

⎜

⎝

𝑅𝑔𝑃⊤ℎ 𝟘
𝟘 𝑅′

𝑔(𝑃
′
ℎ)
⊤

𝑅ℎ+𝐿ℎ(𝑆𝑔+𝑆⊤𝑔 )𝑃
⊤
ℎ 𝟘

𝟘 𝑅′
ℎ+𝐿

′
ℎ(𝑆

′
𝑔+(𝑆

′
𝑔)
⊤)(𝑃 ′

ℎ)
⊤

⎞

⎟

⎟

⎟

⎠

,

( 𝑃ℎ𝑃𝑔 𝟘
𝟘 𝑃 ′

ℎ𝑃
′
𝑔

)

,
[(

𝑆ℎ+𝑃ℎ𝑆𝑔𝑃⊤ℎ 𝟘
𝟘 𝑆′

ℎ+𝑃
′
ℎ𝑆

′
𝑔(𝑃

′
ℎ)
⊤

)]

⎞

⎟

⎟

⎟

⎠

≅

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎝

𝐺 𝟘 𝑅𝑔𝐿⊤ℎ 𝟘
𝟘 𝐺′ 𝟘 𝑅′

𝑔(𝐿
′
ℎ)
⊤

𝟘 𝟘 𝐻+𝐿ℎ𝑆𝑔𝐿⊤ℎ 𝟘
𝟘 𝟘 𝟘 𝐻 ′+𝐿′

ℎ𝑆
′
𝑔(𝐿

′
ℎ)
⊤

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

,
⎛

⎜

⎜

⎝

𝐿𝑔 𝟘
𝟘 𝐿′

𝑔
𝐿ℎ𝑃𝑔 𝟘
𝟘 𝐿′

ℎ𝑃
′
𝑔

⎞

⎟

⎟

⎠

,

⎛

⎜

⎜

⎜

⎝

𝑅𝑔𝑃⊤ℎ 𝟘
𝟘 𝑅′

𝑔(𝑃
′
ℎ)
⊤

𝑅ℎ+𝐿ℎ(𝑆𝑔+𝑆⊤𝑔 )𝑃
⊤
ℎ 𝟘

𝟘 𝑅′
ℎ+𝐿

′
ℎ(𝑆

′
𝑔+(𝑆

′
𝑔)
⊤)(𝑃 ′

ℎ)
⊤

⎞

⎟

⎟

⎟

⎠

,

( 𝑃ℎ𝑃𝑔 𝟘
𝟘 𝑃 ′

ℎ𝑃
′
𝑔

)

,
[(

𝑆ℎ+𝑃ℎ𝑆𝑔𝑃⊤ℎ 𝟘
𝟘 𝑆′

ℎ+𝑃
′
ℎ𝑆

′
𝑔(𝑃

′
ℎ)
⊤

)]

⎞

⎟

⎟

⎟

⎠

=
(

[( 𝐺 𝟘
𝟘 𝐺′

)]

,
( 𝐿𝑔 𝟘

𝟘 𝐿′
𝑔

)

,
( 𝑅𝑔 𝟘

𝟘 𝑅′
𝑔

)

,
( 𝑃𝑔 𝟘

𝟘 𝑃 ′
𝑔

)

,
[( 𝑆𝑔 𝟘

𝟘 𝑆′
𝑔

)])
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#
(

[(𝐻 𝟘
𝟘 𝐻 ′

)]

,
( 𝐿ℎ 𝟘

𝟘 𝐿′
ℎ

)

,
( 𝑅ℎ 𝟘

𝟘 𝑅′
ℎ

)

,
( 𝑃ℎ 𝟘

𝟘 𝑃 ′
ℎ

)

,
[( 𝑆ℎ 𝟘

𝟘 𝑆′
ℎ

)])

= (𝑔 ⊗ 𝑔′) # (ℎ ⊗ ℎ′)

where 𝜏 =
( 𝟙 𝟘 𝟘 𝟘

𝟘 𝟘 𝟙 𝟘
𝟘 𝟙 𝟘 𝟘
𝟘 𝟘 𝟘 𝟙

)

permutes the order of the vertices.
Proposition 4.30 shows the universal property of 𝖬𝖦𝗋𝖺𝗉𝗁 as a coproduct. The intermediate results inLemmas 4.27 to 4.29 define the inclusions and show the factorisation system of 𝖬𝖦𝗋𝖺𝗉𝗁. The inclusionsindicate that adjacency matrices and bounded permutations are graphs with dangling edges of a particularshape.

Lemma 4.27. There are two homomorphisms of props 𝜄1 ∶ 𝖬𝖠𝖽𝗃 → 𝖬𝖦𝗋𝖺𝗉𝗁 and 𝜄2 ∶ 𝖻𝗈𝗎𝗇𝖽𝖯 → 𝖬𝖦𝗋𝖺𝗉𝗁.
Proof. The inclusions are identity on objects and, on morphisms, are defined by

𝜄1 ∶ 𝖬𝖠𝖽𝗃 → 𝖬𝖦𝗋𝖺𝗉𝗁 𝜄2 ∶ 𝖻𝗈𝗎𝗇𝖽𝖯 → 𝖬𝖦𝗋𝖺𝗉𝗁

(𝐵, [𝐺]) →
(

[( )] , !, !, 𝐵, [𝐺]) (𝑘, 𝑃 ) →
([

𝟘𝑘
]

, 𝑃2, 𝟘, 𝑃1, [𝟘]
)

where 𝑃 =
(

𝑃1
𝑃2

), with 𝑃1 ∈ 𝖬𝖺𝗍ℕ(𝑚,𝑚+𝑘) and 𝑃2 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑚+𝑘). These are homomorphisms of props.
They respect composition.

𝜄1(𝐵, [𝐺]) # 𝜄1(𝐶, [𝐻]) 𝜄2(𝑘, 𝑃 ) # 𝜄2(𝑗, 𝑄)
∶=

(

[( )] , !, !, 𝐵, [𝐺]) #
(

[( )] , !, !, 𝐶, [𝐻]
)

∶=
([

𝟘𝑘
]

, 𝑃2, 𝟘, 𝑃1, [𝟘]
)

#
([

𝟘𝑗
]

, 𝑄2, 𝟘, 𝑄1, [𝟘]
)

=
(

[( )] , !, !, 𝐶𝐵, [𝐻 + 𝐶𝐺𝐶⊤
])

=
(

[

𝟘𝑘+𝑗
]

,
(

𝑃2
𝑄2𝑃1

)

, 𝟘, 𝑄1𝑃1, [𝟘]
)

∶=𝜄1(𝐶𝐵,
[

𝐻 + 𝐶𝐺𝐶⊤
]

) ≅
(

[

𝟘𝑘+𝑗
]

,
(

𝑄2𝑃1
𝑃2

)

, 𝟘, 𝑄1𝑃1, [𝟘]
)

= 𝜄1((𝐵, [𝐺]) # (𝐶, [𝐻])) ∶=𝜄2(𝑘 + 𝑗,
(𝑄1𝑃1
𝑄2𝑃1
𝑃2

)

)

= 𝜄2(𝑘 + 𝑗,
(

𝑄
𝟙𝑘

)

𝑃 )

= 𝜄2((𝑘, 𝑃 ) # (𝑗, 𝑄))

They respect identities.
𝜄1(𝟙𝑛, [𝟘]) 𝜄2(0, 𝟙𝑛)
∶=

(

[( )] , !, !, 𝟙𝑛, [𝟘]) ∶=
(

[( )] , !, !, 𝟙𝑛, [𝟘])
= 𝟙𝑛 𝟙𝑛

They respect the monoidal product.
𝜄1(𝐵, [𝐺])⊗ 𝜄1(𝐵′,

[

𝐺′]) 𝜄2(𝑘, 𝑃 )⊗ 𝜄2(𝑘′, 𝑃 ′)
∶=

(

[( )] , !, !, 𝐵, [𝐺])⊗ (

[( )] , !, !, 𝐵′,
[

𝐺′]) ∶=
([

𝟘𝑘
]

, 𝑃2, 𝟘, 𝑃1, [𝟘]
)

⊗
([

𝟘𝑘′
]

, 𝑃 ′
2 , 𝟘, 𝑃

′
1 , [𝟘]

)

=
(

[( )] , !, !, 𝐵 ⊕ 𝐵′,
[

𝐺 ⊕𝐺′]) =
([

𝟘𝑘+𝑘′
]

, 𝑃2 ⊕ 𝑃 ′
2 , 𝟘, 𝑃1 ⊕ 𝑃 ′

1 , [𝟘]
)

∶=𝜄1(𝐵 ⊕ 𝐵′,
[

𝐺 ⊕𝐺′]) ∶=𝜄2(𝑘 + 𝑘′,
( 𝑃1⊕𝑃 ′

1
𝑃2⊕𝑃 ′

2

)

)
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= 𝜄1((𝐵, [𝐺])⊗ (𝐵′,

[

𝐺′])) = 𝜄2(𝑘 + 𝑘′, (𝟙𝑚 ⊕ 𝜎𝑘,𝑚′ ⊕ 𝟙𝑘′ )
( 𝑃
𝑃 ′
)

)
= 𝜄2((𝑘, 𝑃 )⊗ (𝑘′, 𝑃 ′))

The inclusions of𝖬𝖠𝖽𝗃 and 𝖻𝗈𝗎𝗇𝖽𝖯 into𝖬𝖦𝗋𝖺𝗉𝗁 characterise all morphisms.
Lemma 4.28. Morphisms 𝑔∶ 𝑛 → 𝑚 in 𝖬𝖦𝗋𝖺𝗉𝗁 split as 𝑔 = 𝜄1(𝑎) # 𝜄2(𝑣), for some 𝑎∶ 𝑛 → 𝑙 in 𝖬𝖠𝖽𝗃 and
𝑣∶ 𝑙 → 𝑚 in 𝖻𝗈𝗎𝗇𝖽𝖯, uniquely up to permutations.
Proof. A morphism 𝑔 = ([𝐺] , 𝐿, 𝑅, 𝑃 , [𝑆]) with 𝑘 vertices in𝖬𝖦𝗋𝖺𝗉𝗁(𝑛, 𝑚) splits as a composition.

𝑔 = ([𝐺] , 𝐿, 𝑅, 𝑃 , [𝑆])
=
(

[( )] , !𝑛, !𝑚+𝑘, ( 𝑃𝐿 ), [( 𝑆 𝟘
𝑅 𝐺

)])

#
([

𝟘𝑘
]

, (𝟘|𝟙𝑘), 𝟘, (𝟙𝑚|𝟘),
[

𝟘𝑚
])

= 𝜄1(
( 𝑃
𝐿
)

,
[( 𝑆 𝟘

𝑅 𝐺
)]

) # 𝜄2(𝑘, 𝟙𝑚+𝑘)
= 𝜄1(𝑎) # 𝜄2(𝑣)

Suppose that the same morphism 𝑔 splits as 𝑔 = 𝜄1(𝐵, [𝑇 ]) # 𝜄2(𝑘′, 𝑃𝜏 ) = 𝜄1(𝑎′) # 𝜄2(𝑣′) as well. We show thatthere is a permutation 𝜏 such that 𝑎 = 𝑎′ # 𝜏 and 𝑣′ = 𝜏 # 𝑣.Then, 𝑃𝜏 ∈ 𝖬𝖺𝗍ℕ(𝑚′ + 𝑘′, 𝑚′ + 𝑘′) is the matrix corresponding to a permutation 𝜏 and 𝑚′ = 𝑚 because
(𝑘′, 𝑃𝜏 )∶ 𝑚′ + 𝑘′ → 𝑚′, 𝑔∶ 𝑛→ 𝑚 and their codomains must coincide. This permutation matrix splits along
its rows as 𝑃𝜏 =

(

𝑃1
𝑃2

), with 𝑃1 ∈ 𝖬𝖺𝗍ℕ(𝑚,𝑚 + 𝑘′) and 𝑃2 ∈ 𝖬𝖺𝗍ℕ(𝑘′, 𝑚 + 𝑘′) and the second factor of 𝑔
splits with the permutation 𝜏: (𝑘′, 𝑃𝜏 ) = (0, 𝑃𝜏 ) # (𝑘′, 𝟙𝑚+𝑘′ ) = 𝜏 # (𝑘′, 𝟙𝑚+𝑘′ ).

𝑔 = 𝜄1(𝐵, [𝑇 ]) # 𝜄2(𝑘′, 𝑃𝜏 )
= 𝜄1(𝐵, [𝑇 ]) # 𝜄2(𝜏 # (𝑘′, 𝟙𝑚+𝑘′ ))
= 𝜄1(𝐵, [𝑇 ]) # 𝜏 # 𝜄2(𝑘′, 𝟙𝑚+𝑘′ )
= 𝜄1((𝐵, [𝑇 ]) # 𝜏) # 𝜄2(𝑘′, 𝟙𝑚+𝑘′ )
= 𝜄1(𝑃𝜏𝐵,

[

𝑃𝜏𝑇𝑃
⊤
𝜏
]

) # 𝜄2(𝑘′, 𝟙𝑚+𝑘′ )
=
(

[( )] , !𝑛, !𝑚+𝑘′ , 𝑃𝜏𝐵, [𝑃𝜏𝑇𝑃⊤𝜏 ]) #
([

𝟘𝑘′
]

, (𝟘|𝟙𝑘′ ), 𝟘, (𝟙𝑚|𝟘),
[

𝟘𝑚
])

=
([

𝑃2𝑇𝑃
⊤
2
]

, 𝑃2𝐵, 𝑃2(𝑇 + 𝑇 ⊤)𝑃⊤1 , 𝑃1𝐵,
[

𝑃1𝑇𝑃
⊤
1
])

Then, we can rewrite the components of 𝑔 in terms of 𝑃𝜏 , 𝐵 and 𝑇 .
[𝐺] =

[

𝑃2𝑇𝑃
⊤
2
]

𝐿 = 𝑃2𝐵

𝑅 = 𝑃2(𝑇 + 𝑇 ⊤)𝑃⊤1
𝑃 = 𝑃1𝐵

[𝑆] =
[

𝑃1𝑇𝑃
⊤
1
]

As a consequence, 𝑘 = 𝑘′ and we can relate the two factorisations.
( 𝑃
𝐿
) [( 𝑆 𝟘

𝑅 𝐺
)]

=
(

𝑃1𝐵
𝑃2𝐵

)

=
[(

𝑃1𝑇𝑃⊤1 𝟘
𝑃2(𝑇+𝑇⊤)𝑃⊤1 𝑃2𝑇𝑃⊤2

)]
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= 𝑃𝜏𝐵 =
[(

𝑃1𝑇𝑃⊤1 𝑃1𝑇𝑃⊤2
𝑃2𝑇𝑃⊤1 𝑃2𝑇𝑃⊤2

)]

=
[

𝑃𝜏𝑇𝑃
⊤
𝜏
]

Then, (( 𝑃𝐿 ), [( 𝑆 𝟘
𝑅 𝐺

)]

) = (𝑃𝜏𝐵,
[

𝑃𝜏𝑇𝑃⊤𝜏
]

) = (𝐵, [𝑇 ]) # 𝜏.
By Theorem2.16, this resultmeans that𝖬𝖦𝗋𝖺𝗉𝗁 is a composite prop. The next result ensures that𝖬𝖦𝗋𝖺𝗉𝗁is, in particular, the coproduct of𝖬𝖠𝖽𝗃 and 𝖻𝗈𝗎𝗇𝖽𝖯.

Lemma 4.29. For any two prop morphisms 𝐚∶ 𝖬𝖠𝖽𝗃 → 𝖯 and 𝐯∶ 𝖻𝗈𝗎𝗇𝖽𝖯 → 𝖯,
𝐯(𝑘, 𝑃 ) # 𝐚(𝐵, [𝑆]) = 𝐚((𝐵 ⊕ 𝟙𝑘)𝑃 ,

[

𝑆 ⊕ 𝟘𝑘
]

) # 𝐯(𝑘, 𝟙𝑚+𝑘) .

Proof. We compute the composition using that 𝐚 and 𝐯 are prop morphisms. We use the red functor boxesfor 𝐯 and the blue ones for 𝐚. We indicate with the costate 𝑘 the morphism (𝑘, 𝟙𝑘) in 𝖻𝗈𝗎𝗇𝖽𝖯, with 𝑏 themorphism (𝐵, [𝑆]) in 𝖬𝖠𝖽𝗃, and with 𝜎𝑃 the permutation in 𝖬𝖠𝖽𝗃, 𝖻𝗈𝗎𝗇𝖽𝖯 or 𝖯 corresponding to the per-mutation matrix 𝑃 .
𝐯(𝑘, 𝑃 ) # 𝐚(𝐵, [𝑆])
= 𝐯(𝜎𝑃 # (𝟙𝑛 ⊗ (𝑘, 𝟙𝑘))) # 𝐚(𝐵, [𝑆])

= 𝜎𝑃 𝑘
𝑏

= 𝜎𝑃

𝑘

𝑏

= 𝜎𝑃

𝑘

𝑏

= 𝜎𝑃 𝑘

𝑏

= 𝜎𝑃 𝑘

𝑏

= 𝜎𝑃 𝑘
𝑏

= 𝐚(𝜎𝑃 # ((𝐵, [𝑆])⊗ 𝟙𝑘)) # 𝐯(𝟙𝑚 ⊗ (𝑘, 𝟙𝑘))
= 𝐚((𝐵 ⊕ 𝟙𝑘)𝑃 ,

[

𝑆 ⊕ 𝟘𝑘
]

) # 𝐯(𝑘, 𝟙𝑚+𝑘)

With these results, we can show the universal property of𝖬𝖦𝗋𝖺𝗉𝗁.
Proposition 4.30. The prop of graphs with dangling edges is the coproduct of the prop of adjacencymatricesand that of bounded permutations: 𝖬𝖦𝗋𝖺𝗉𝗁 ≅ 𝖬𝖠𝖽𝗃 + 𝖻𝗈𝗎𝗇𝖽𝖯.
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Proof. By Lemma 4.28, we can apply the result on composition of props [Lac04, Theorem 4.6], recalled inTheorem 2.16, to the prop𝖬𝖦𝗋𝖺𝗉𝗁 to obtain that it is the composition of𝖬𝖠𝖽𝗃 and 𝖻𝗈𝗎𝗇𝖽𝖯 via a distributivelaw 𝜆∶ (𝜄2(𝑣) ∣ 𝜄1(𝑎)) → (𝜄1(𝑎̂) ∣ 𝜄2(𝑣̂)). In particular, for any two prop morphisms 𝐚∶ 𝖬𝖠𝖽𝗃 → 𝖯 and
𝐯∶ 𝖻𝗈𝗎𝗇𝖽𝖯 → 𝖯 such that 𝐯(𝑣) # 𝐚(𝑎) = 𝐚(𝑎̂) # 𝐯(𝑣̂), there is a unique prop morphism 𝐡∶ 𝖬𝖦𝗋𝖺𝗉𝗁 → 𝖯 suchthat 𝐚 = 𝜄1 # 𝐡 and 𝐯 = 𝜄2 # 𝐡. By Lemma 4.29, any two prop morphisms 𝐚∶ 𝖬𝖠𝖽𝗃 → 𝖯 and 𝐯∶ 𝖻𝗈𝗎𝗇𝖽𝖯 → 𝖯satisfy 𝐯(𝑣) # 𝐚(𝑎) = 𝐚(𝑎̂) # 𝐯(𝑣̂), which means that any two such morphisms define a unique prop morphism
𝐡∶ 𝖬𝖦𝗋𝖺𝗉𝗁 → 𝖯 such that 𝐚 = 𝜄1 # 𝐡 and 𝐯 = 𝜄2 # 𝐡. This is equivalent to say that 𝖬𝖦𝗋𝖺𝗉𝗁 satisfies theuniversal property of the coproduct of𝖬𝖠𝖽𝗃 and 𝖻𝗈𝗎𝗇𝖽𝖯.
A syntax for graphs with dangling edges

Wegive a syntactic presentation of graphswith dangling edges by giving syntactic presentations of its compo-nents𝖬𝖠𝖽𝗃 and 𝖻𝗈𝗎𝗇𝖽𝖯. The string diagrammatic syntax for adjacencymatrices relies on the characterisationof matrices as a bialgebra but needs the addition of a “cup” generator ∶ 0 → 2 (Figure 4.4) that capturesthe equivalence relation of adjacency matrices (Lemma 4.36). Theorem 4.39 shows that 𝖠𝖽𝗃 is a syntacticpresentation of𝖬𝖠𝖽𝗃.
Definition 4.31. The prop 𝖠𝖽𝗃 is presented by the generators and equations in Figures 4.3 and 4.4.

= = =

Figure 4.4: Additional generator and equations for the prop of adjacency matrices (Figure 4.3 contains therest of generators and equations).

As recalled in Section 2.1, presenting a prop with generators and equations corresponds to taking a co-equaliser in the category 𝖯𝗋𝗈𝗉 of props and their morphisms. The generators and equations in Figure 4.4indicate that 𝖠𝖽𝗃 is the coequaliser of two prop morphisms 𝐬, 𝐭 ∶ 𝖠 → 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉. The prop 𝖠 is freelygenerated by two morphisms 𝑎∶ 0 → 3 and 𝑏∶ 0 → 1, while the prop 𝖢𝗎𝗉 is presented by a cup morphism
∶ 0 → 2 and quotiented by the first equation in Figure 4.4. The prop morphisms are defined inductivelyby their images on the generators of 𝖠.

𝐬(𝑎)∶= 𝐭(𝑎)∶=

𝐬(𝑏)∶= 𝐭(𝑏)∶=

(4.1)

The isomorphism between the props 𝖠𝖽𝗃 and𝖬𝖠𝖽𝗃 is proven in [CS15, Theorem 4.2] by defining a propmorphism 𝖠𝖽𝗃 → 𝖬𝖠𝖽𝗃 inductively and showing that it is an isomorphism. We rely on the same argumentsbut give a slightly different proof. We show that𝖬𝖠𝖽𝗃 also satisfies the universal property of the coequaliser
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of 𝐬 and 𝐭. The isomorphism 𝜙∶ 𝖬𝖠𝖽𝗃 → 𝖠𝖽𝗃 defined in Theorem 4.39 captures the normal form of mor-phisms in 𝖠𝖽𝗃.

𝜙∶ (𝐵, [𝐺]) → 𝐺
𝐵 (4.2)

This notation implicitly relies on the isomorphism 𝖡𝗂𝖺𝗅𝗀 ≅ 𝖬𝖺𝗍ℕ of Proposition 4.18: a box 𝐴 indicates
the image of the matrix 𝐴 under the isomorphism𝐌𝐚𝐭−1 ∶ 𝖬𝖺𝗍ℕ → 𝖡𝗂𝖺𝗅𝗀.The proof that𝖬𝖠𝖽𝗃 is the coequaliser of 𝐬 and 𝐭 first constructs a candidate coequaliser map 𝐪∶ 𝖡𝗂𝖺𝗅𝗀+
𝖢𝗎𝗉 → 𝖬𝖠𝖽𝗃 and then shows the universal property for it. The prop morphism 𝐪 is defined as a coproductmap of prop morphisms 𝐛∶ 𝖡𝗂𝖺𝗅𝗀 → 𝖬𝖠𝖽𝗃 and 𝐜∶ 𝖢𝗎𝗉 → 𝖬𝖠𝖽𝗃. The morphism 𝐛 is the composition of theisomorphism𝐌𝐚𝐭 ∶ 𝖡𝗂𝖺𝗅𝗀 → 𝖬𝖺𝗍ℕ and the prop morphism 𝐣∶ 𝖬𝖺𝗍ℕ → 𝖬𝖠𝖽𝗃 described in Lemma 4.32.
Lemma 4.32. There is a morphism of props 𝐣∶ 𝖬𝖺𝗍ℕ → 𝖬𝖠𝖽𝗃 from the prop of matrices to that of adjacencymatrices defined by 𝐣(𝐴)∶= (𝐴, [𝟘]).
Proof. We check that 𝐣 preserves compositions, identities and monoidal products.

𝐣(𝐴) # 𝐣(𝐵) 𝐣(𝟙𝑛) 𝐣(𝐴)⊗ 𝐣(𝐴′)
∶= (𝐴, [𝟘]) # (𝐵, [𝟘]) ∶= (𝟙𝑛,

[

𝟘𝑛
]

) ∶= (𝐴, [𝟘])⊗ (𝐴′, [𝟘])
∶= (𝐵𝐴,

[

𝐵𝟘𝐵⊤ + 𝟘
]

) = 𝟙𝑛 ∶= (𝐴⊕𝐴′, [𝟘⊕ 𝟘])
= (𝐵𝐴, [𝟘]) = (𝐴⊕𝐴′, [𝟘])

∶=𝐣(𝐴 # 𝐵) ∶=𝐣(𝐴⊕𝐴′)

There is a morphism in𝖬𝖠𝖽𝗃 that behaves like the cup .
Lemma 4.33. There is a morphism of props 𝐜∶ 𝖢𝗎𝗉 → 𝖬𝖠𝖽𝗃 defined by

𝐜( )∶= (¡2, [( 0 1
0 0

)]

) .

Proof. We define the mapping 𝐜 on the generator as 𝐜( )∶= (¡2, [( 0 1
0 0

)]

), which, using the isomorphism
𝐌𝐚𝐭 ∶ 𝖡𝗂𝖺𝗅𝗀 → 𝖬𝖺𝗍ℕ, becomes

𝐜( ) =
(

𝐌𝐚𝐭
( )

,
[

𝐌𝐚𝐭
( )])

.

The image on the rest of the morphisms of𝖢𝗎𝗉 is defined inductively, so we need to check that the equationof commutativity of the cup holds. We use the equivalence relation of adjacencymatrices for ( 0 0
1 0

)

∼
( 0 1
0 0

).
𝐜( # )
∶= 𝐜( ) # 𝐜( )

=
(

𝐌𝐚𝐭
( )

,
[

𝐌𝐚𝐭
( )])

#
(

𝐌𝐚𝐭
( )

,
[

𝐌𝐚𝐭
( )])

∶=
(

𝐌𝐚𝐭
( )

,
[

𝐌𝐚𝐭
( )

+𝐌𝐚𝐭
( )

])

=
(

𝐌𝐚𝐭
( )

,
[

𝐌𝐚𝐭
( )])

= (¡2, [( 0 0
1 0

)]

)
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= (¡2, [( 0 1

0 0
)]

)
∶=𝐜( )

The propmorphism𝐪∶ 𝖡𝗂𝖺𝗅𝗀+𝖢𝗎𝗉 → 𝖬𝖠𝖽𝗃 is the coproductmap of the propmorphisms𝐛 and 𝐜 definedin Lemmas 4.32 and 4.33. The morphism 𝐪 also coequalises 𝐬 and 𝐭.
Proposition 4.34. The coproduct map 𝐪∶= [𝐛, 𝐜] is a coequalising prop morphism 𝐪∶ 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉 → 𝖬𝖠𝖽𝗃of the pair 𝐬, 𝐭 ∶ 𝖠 → 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉.
Proof. Thepropmorphism𝐛∶ 𝖡𝗂𝖺𝗅𝗀 → 𝖬𝖠𝖽𝗃 is defined as the composition of the isomorphism𝐌𝐚𝐭 ∶ 𝖡𝗂𝖺𝗅𝗀 →
𝖬𝖺𝗍ℕ, recalled in Proposition 4.18, with the morphism 𝐣∶ 𝖬𝖺𝗍ℕ → 𝖬𝖠𝖽𝗃, defined in Lemma 4.32. The propmorphism 𝐜∶ 𝖢𝗎𝗉 → 𝖬𝖠𝖽𝗃 is defined in Lemma 4.33. We show that their coproduct map 𝐪 is a coequalis-ing morphism of 𝐬 and 𝐭 by computing the images of 𝐬 # 𝐪 and 𝐭 # 𝐪 on both the morphisms 𝑎∶ 0 → 2 and
𝑏∶ 0 → 1 of the prop 𝖠. For both computations, we use the definition of 𝐪 as a coproduct map.

𝐪(𝐬(𝑎))∶= 𝐪
⎛

⎜

⎜

⎝

⎞

⎟

⎟

⎠

= 𝐪
( )

# 𝐪
( )

= 𝐜
( )

# 𝐛
( )

∶=
(

𝐌𝐚𝐭
( )

,
[

𝐌𝐚𝐭
( )])

#

(

𝐌𝐚𝐭
( )

,
[

𝐌𝐚𝐭
( )]

)

=

(

𝐌𝐚𝐭
( )

,

[

𝐌𝐚𝐭
( )

+𝐌𝐚𝐭
( )

])

=

(

𝐌𝐚𝐭
( )

,

[

𝐌𝐚𝐭
( )])

=

⎛

⎜

⎜

⎜

⎝

𝐌𝐚𝐭
⎛

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎠

,
⎡

⎢

⎢

⎣

𝐌𝐚𝐭
⎛

⎜

⎜

⎝

⎞

⎟

⎟

⎠

+𝐌𝐚𝐭
( )

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

=

(

𝐌𝐚𝐭
( )

,

[

𝐌𝐚𝐭
( )])

#

(

𝐌𝐚𝐭
( )

,
[

𝐌𝐚𝐭
( )]

)

= 𝐜
⎛

⎜

⎜

⎝

⎞

⎟

⎟

⎠

# 𝐛
( )

= 𝐪
⎛

⎜

⎜

⎝

⎞

⎟

⎟

⎠

# 𝐪
( )
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= 𝐪

⎛

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎠

∶=𝐪(𝐭(𝑎))

𝐪(𝐬(𝑏))∶= 𝐪
( )

= 𝐪
( )

# 𝐪
( )

= 𝐜
( )

# 𝐛
( )

=
(

𝐌𝐚𝐭
( )

,
[

𝐌𝐚𝐭
( )])

#
(

𝐌𝐚𝐭
( )

, [𝐌𝐚𝐭 ( )]
)

=
(

𝐌𝐚𝐭
( )

,
[

𝐌𝐚𝐭
( )

+𝐌𝐚𝐭 ( )
])

= (𝐌𝐚𝐭 ( ) , [𝐌𝐚𝐭 ( )])
= 𝐛 ( )
= 𝐪 ( )

∶=𝐪(𝐭(𝑏))

We show that the prop morphism 𝐪 satisfies the universal property of coequalisers. For every coequal-ising prop morphism 𝐩∶ 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉 → 𝖯 of the pair 𝐬, 𝐭 ∶ 𝖠 → 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉, Proposition 4.38 defines acandidate extension 𝐩̄∶ 𝖬𝖠𝖽𝗃 → 𝖯 of 𝐩 to𝖬𝖠𝖽𝗃. Theorem 4.39 concludes by showing that 𝐩̄ is the uniqueextension of 𝐩 along 𝐪. For constructing the candidate extension 𝐩̄ we need to investigate some propertiesof the coequalising morphism 𝐩 that are consequences of the cup axioms in Figure 4.4. Those equationsimply that the cup quotients by transposition.
𝐴

=
𝐴⊤

This equation holds in 𝖠𝖽𝗃 and also in the image of any coequalising morphism of 𝐬 and 𝐭.
Lemma 4.35. For any coequalising morphism of props 𝐩∶ 𝖡𝗂𝖺𝗅𝗀+𝖢𝗎𝗉 → 𝖯 of the pair 𝐬, 𝐭 ∶ 𝖠 → 𝖡𝗂𝖺𝗅𝗀+𝖢𝗎𝗉in Equation (4.1),

𝐩
(

𝐴
)

= 𝐩
(

𝐴⊤

)

. (4.3)

Proof. By Proposition 4.18, every morphism 𝐴∶ 𝑛 → 𝑚 in 𝖬𝖺𝗍ℕ can be written as compositions and mo-noidal products of finitely many of its generators. These generators are the images under the isomorphism
𝐌𝐚𝐭 ∶ 𝖡𝗂𝖺𝗅𝗀 → 𝖬𝖺𝗍 of the generators in Figure 4.3. By these considerations, the proof can proceed by struc-tural induction on the morphisms. For the base cases, Equation (4.3) holds for the bialgebra generators
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because 𝐩 is a coequalising morphism for 𝐬 and 𝐭, 𝐬 # 𝐩 = 𝐭 # 𝐩.

𝐩
⎛

⎜

⎜

⎝

⎞

⎟

⎟

⎠

= 𝐩(𝐬(𝑎)) = 𝐩(𝐭(𝑎)) = 𝐩

⎛

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎠

𝐩
( )

= 𝐩(𝐬(𝑏)) = 𝐩(𝐭(𝑏)) = 𝐩 ( )

The two remaining equations follow by commutativity of the cup. For the inductive steps, suppose thatEquation (4.3) holds for 𝐴∶ 𝑛 → 𝑚, 𝐵∶ 𝑚 → 𝑙 and 𝐴′ ∶ 𝑛′ → 𝑚′. We show that it holds for 𝐴 # 𝐵 and for
𝐴⊕𝐴′. We indicate 𝐩 with a blue functor box.

𝐴 𝐵

𝐴

𝐵

=
𝐴 𝐵

=

𝐴

𝐵

=
𝐴⊤

𝐵
=

𝐴

𝐵

=
𝐴⊤

𝐵
=

𝐴⊤

𝐵⊤

=
𝐴⊤

𝐵
=

𝐴⊤

𝐵⊤

=
𝐴⊤

𝐵
=

𝐴⊤

𝐵⊤



4.3. GRAPHS WITH DANGLING EDGES 59

=
𝐵⊤ 𝐴⊤

=
𝐵⊤ 𝐴⊤

A consequence of this result is that equality in the prop of adjacency matrices captures the equivalencerelation of adjacency matrices. Recalling Definition 4.21, two adjacency matrices are equivalent, [𝐺] = [𝐻],if and only if they are equal up to transposition, 𝐺 + 𝐺⊤ = 𝐻 +𝐻⊤. In string diagrams, this is
[𝐺] = [𝐻] iff 𝐺

=
𝐻

,

and holds in 𝖠𝖽𝗃 and the image of any coequalising prop morphism of 𝐬 and 𝐭.
Lemma 4.36. For two adjacency matrices [𝐴] and [𝐵], and any coequalising morphism of props 𝐩∶ 𝖡𝗂𝖺𝗅𝗀 +
𝖢𝗎𝗉 → 𝖯 of the pair 𝐬, 𝐭 ∶ 𝖠 → 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉 in Equation (4.1),

if [𝐴] = [𝐵] then 𝐩
(

𝐴
)

= 𝐩
(

𝐵
)

.

Proof. Proceed by induction on the size 𝑛 of the matrices. For 𝑛 = 0, there is only one morphism 0 → 0in𝖬𝖺𝗍ℕ so the statement is trivially true. For the induction step, suppose that the statement is true for any
two 𝑛 by 𝑛matrices𝐴′ and𝐵′ and consider two 𝑛+1 by 𝑛+1matrices𝐴 =

( 𝐴′ 𝑎
𝑎′ 𝑖

) and𝐵 =
(

𝐵′ 𝑏
𝑏′ 𝑗

). Notice
that the two matrices are equivalent, [𝐴] = [𝐵], if and only if [𝐴′] =

[

𝐵′], 𝑎′ + 𝑎⊤ = 𝑏′ + 𝑏⊤ and 𝑖 = 𝑗,
because 2 ⋅ 𝑖 = 2 ⋅ 𝑗 implies 𝑖 = 𝑗. By induction hypothesis, [𝐴′] =

[

𝐵′], 𝑎′ + 𝑎⊤ = 𝑏′ + 𝑏⊤ and 𝑖 = 𝑗 implythe corresponding equalities in the image of 𝐩.
𝐩
(

𝐴
)

= 𝐩
(

𝐵
)

𝐩
(

𝑎′

𝑎⊤

)

= 𝐩
(

𝑏′

𝑏⊤

)

𝐩
(

𝑖
)

= 𝐩
(

𝑗
)

By functoriality of 𝐩, we obtain

𝐩

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐴′

𝑖

𝑎′

𝑎⊤

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 𝐩

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐵′

𝑗

𝑏′

𝑏⊤

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
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By the bialgebra axioms (Figure 4.3) and Lemma 4.35, we can do the rewrites below for any 𝑛 + 1 by 𝑛 + 1square matrix𝑀 =

(𝑁 𝑢
𝑣 𝑘

).

𝐩
(

𝑀
)

= 𝐩

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑁

𝑢

𝑣

𝑘

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 𝐩

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑁

𝑢

𝑣

𝑘

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 𝐩

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑁

𝑣

𝑘

𝑢⊤

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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= 𝐩

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑁

𝑘

𝑣

𝑢⊤

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 𝐩

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑁

𝑘

𝑣

𝑢⊤

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

With these equalities, we obtain that
𝐩
(

𝐴
)

= 𝐩
(

𝐵
)

.

Example 4.37. The matrices 𝐺 =
( 0 1
1 0

) and𝐻 =
( 0 0
2 0

) are equivalent as adjacency matrices. In fact, theirstring diagrams are equal up to the equations of 𝖠𝖽𝗃.
𝐺

=

=

=

=
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=
𝐻

Thanks to Lemmas 4.35 and 4.36, the mapping 𝜙∶ 𝖬𝖠𝖽𝗃 → 𝖠𝖽𝗃 given in Equation (4.2) is a prop mor-phism. More generally, for every coequalising prop morphism 𝐩∶ 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉 → 𝖯 of the pair 𝐬, 𝐭 ∶ 𝖠 →
𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉, these results allow us to define a candidate extension 𝐩̄∶ 𝖬𝖠𝖽𝗃 → 𝖯.
Proposition 4.38. Any coequalising prop morphism 𝐩∶ 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉 → 𝖯 of the pair 𝐬, 𝐭 ∶ 𝖠 → 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉in Equation (4.1) induces a prop morphism 𝐩̄∶ 𝖬𝖠𝖽𝗃 → 𝖯 given by

𝐩̄(𝐵, [𝐺])∶= 𝐩
(

𝐺
𝐵

)

.

Proof. By Lemma 4.36 and functoriality of 𝐩, the assignment 𝐩̄ is well-defined on equivalence classes ofadjacency matrices: if (𝐵, [𝐺]) = (𝐵, [𝐻]), then 𝐩̄(𝐵, [𝐺]) = 𝐩̄(𝐵, [𝐻]) because
𝐩
(

𝐺
𝐵

)

= 𝐩
(

𝐻
𝐵

)

.

Applying Lemma 4.35, we check that 𝐩̄ preserves compositions.
𝐩̄((𝐵, [𝐺]) # (𝐶, [𝐻]))

∶= 𝐩̄(𝐶𝐵,
[

𝐶𝐺𝐶⊤ +𝐻
]

)

∶= 𝐩
⎛

⎜

⎜

⎜

⎝

𝐶𝐵

𝐶𝐺𝐶⊤

𝐻

⎞

⎟

⎟

⎟

⎠

= 𝐩

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐶𝐵
𝐶𝐺

𝐶

𝐻

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 𝐩

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐶𝐵
𝐶𝐺

𝐶
𝐻

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= 𝐩
⎛

⎜

⎜

⎜

⎝

𝐺
𝐵

𝐻
𝐶

⎞

⎟

⎟

⎟

⎠

= 𝐩
(

𝐺
𝐵

)

# 𝐩
(

𝐻
𝐶

)
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∶=̄𝐩(𝐵, [𝐺]) # 𝐩̄(𝐶, [𝐻])

The hypothesis that 𝐩 is a coequalising morphism implies that 𝐩(𝐬(𝑏)) = 𝐩(𝐭(𝑏)) and that 𝐩̄ preserves identi-ties.
𝐩̄(𝟙𝑛,

[

𝟘𝑛
]

)

∶= 𝐩
(

𝟘
𝟙𝑛

)

= 𝐩
( )

= 𝐩
⎛

⎜

⎜

⎝

⎞

⎟

⎟

⎠

= 𝐩( 𝑛)
= 𝟙𝑛

Finally, we check that 𝐩̄ preserves monoidal products.
𝐩̄((𝐵, [𝐺])⊗ (𝐵′,

[

𝐺′]))
∶= 𝐩̄(𝐵 ⊕ 𝐵′,

[

𝐺 ⊕𝐺′])

∶= 𝐩

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐵

𝐺

𝐵′

𝐺′

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 𝐩

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐵
𝐺

𝐵′

𝐺′

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= 𝐩
(

𝐺
𝐵

)

⊗ 𝐩
(

𝐺′
𝐵′

)

∶=̄𝐩(𝐵, [𝐺])⊗ 𝐩̄(𝐵′,
[

𝐺′])

The candidate coequaliser of Proposition 4.34 is, indeed, a coequaliser. This follows from checking thatthe candidate extension of a coequalising prop morphism 𝐩 in Proposition 4.38 is an extension of 𝐩 along 𝐪and is unique. In particular, the propmorphism𝜙 defined in Equation (4.2) is the extension of the coequalisermap 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉 → 𝖠𝖽𝗃. Then, 𝜙∶ 𝖬𝖠𝖽𝗃 → 𝖠𝖽𝗃 is an isomorphism and gives a normal form for morphismsin 𝖠𝖽𝗃.
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Theorem 4.39. The prop 𝖠𝖽𝗃 is isomorphic to the prop 𝖬𝖠𝖽𝗃 of adjacency matrices via the isomorphism
𝜙∶ 𝖬𝖠𝖽𝗃 → 𝖠𝖽𝗃 defined in Equation (4.2).
Proof. Proposition 4.34 provides a candidate 𝐪∶ 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉 → 𝖬𝖠𝖽𝗃 for the coequaliser of 𝐬 and 𝐭, andProposition 4.38 defines a morphism 𝐩̄∶ 𝖬𝖠𝖽𝗃 → 𝖯 for any coequalising morphism 𝐩∶ 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉 → 𝖯.The prop morphism 𝐪 is the coequaliser if 𝐩̄ is the unique prop morphism such that 𝐪 # 𝐩̄ = 𝐩. Since 𝐪 is acoproduct map, its composition with 𝐩̄ is also a coproduct map

𝐪 # 𝐩̄ = [𝐛 # 𝐩̄, 𝐜 # 𝐩̄]

and we can check that the desired equality holds by checking the components separately. We implicitly usethat𝐌𝐚𝐭 is an isomorphism.
𝐩̄(𝐛(𝐌𝐚𝐭−1(𝐴))) 𝐩̄

(

𝐜
( ))

= 𝐩̄(𝐣(𝐴))

∶= 𝐩̄(𝐴, [𝟘]) ∶= 𝐩̄
(

𝐌𝐚𝐭
( )

,
[

𝐌𝐚𝐭
( )])

∶= 𝐩
(

𝟘
𝐴

)

∶= 𝐩
⎛

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎠

= 𝐩
(

𝐴
)

= 𝐩
(

𝜄2
( ))

= 𝐩(𝜄1(𝐌𝐚𝐭−1(𝐴)))

Suppose that there is another morphism 𝐫 ∶ 𝖬𝖠𝖽𝗃 → 𝖯 such that 𝐪 # 𝐫 = 𝐩. We check that 𝐫 must coincidewith 𝐩̄.
𝐫(𝐵, [𝐺])

= 𝐫
((( 𝟙

𝟘
𝟘

)

,
[( 𝟘 𝟘 𝟘

𝟘 𝟘 𝟙
𝟘 𝟘 𝟘

)])

# ((𝐵 ∣ 𝐺 ∣ 𝟙), [𝟘])
)

= 𝐫
⎛

⎜

⎜

⎝

𝐜
( )

# 𝐛
⎛

⎜

⎜

⎝

𝐵
𝐺

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

= 𝐫
⎛

⎜

⎜

⎝

𝐪
( )

# 𝐪
⎛

⎜

⎜

⎝

𝐵
𝐺

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

= 𝐫
⎛

⎜

⎜

⎝

𝐪
⎛

⎜

⎜

⎝

#
𝐵

𝐺
⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

= 𝐩
(

𝐺
𝐵

)

∶=̄𝐩(𝐵, [𝐺])

This shows that𝖬𝖠𝖽𝗃 is the coequaliser of 𝐬 and 𝐭, but so is𝖠𝖽𝗃 by its definition. Colimits are unique up to theunique isomorphism given by extensions, so the prop morphism 𝜙∶ 𝖬𝖠𝖽𝗃 → 𝖠𝖽𝗃 defined in Equation (4.2)is this isomorphism.
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We will add vertices to adjacency matrices to obtain graphs, but, first, we study vertices on their own.The prop 𝖵𝖾𝗋𝗍 is freely generated by a “vertex” 1 → 0 generator, so morphisms are permutations with someoutputs bounded by vertices.

Definition 4.40. The prop 𝖵𝖾𝗋𝗍 is freely generated by one 𝗏∶ 1 → 0 generator and no extra equations(Figure 4.5).

Figure 4.5: Generator of the one-vertex prop.

Graphs are adjacency matrices with vertices. The prop 𝖵𝖾𝗋𝗍 is isomorphic to that of bounded permuta-tions, 𝖻𝗈𝗎𝗇𝖽𝖯, via the isomorphism that composes the bounded outputs with vertices.
𝜓 ∶ (𝑘, 𝑃 ) → 𝑃

𝑚
𝑘

𝑚

𝑘

This defines an isomorphism because we can check initiality of 𝖻𝗈𝗎𝗇𝖽𝖯.
Proposition 4.41. The freely generated prop 𝖵𝖾𝗋𝗍 is isomorphic to that of bounded permutations, 𝖻𝗈𝗎𝗇𝖽𝖯 ≅
𝖵𝖾𝗋𝗍.
Proof. We show that 𝖻𝗈𝗎𝗇𝖽𝖯 also satisfies the universal property of 𝖵𝖾𝗋𝗍: it is initial among the props witha 1 → 0 morphism. Let 𝖯 be a prop with a morphism 𝑣∶ 1 → 0 and define 𝐇∶ 𝖻𝗈𝗎𝗇𝖽𝖯 → 𝖯 as identity onobjects and, on morphisms, as

𝐇(𝑘, 𝑃𝜏 )∶= 𝜏 # (𝟙𝑚 ⊗ 𝑣𝑘) = 𝜏
𝑘
𝑣

𝑚
𝑘

𝑚 ,

where 𝑃𝜏 is the permutation matrix corresponding to the permutation 𝜏 and 𝑣𝑘 is the 𝑘-fold monoidal prod-uct of 𝑣 with itself. Then, 𝐇(1, 𝟙1) = 𝑣 and 𝐇 is well-defined on equivalence classes by naturality of thesymmetries in 𝖯.
𝐇(𝑘, (𝟙𝑚 ⊕ 𝑃𝜎)𝑃𝜏 )

∶= 𝜏 𝜎
𝑘
𝑣

𝑚
𝑘

𝑚

= 𝜏
𝑘
𝑣

𝑚
𝑘

𝑚

∶=𝐇(𝑘, 𝑃𝜏 )

The definition above gives a functor because𝐇 preserves identities,
𝐇(0, 𝟙𝑚)∶= 𝟙𝑚 ,

and preserves compositions.
𝐇(𝑘, 𝑃𝜏 ) # 𝐇(𝑗, 𝑃𝜎)
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∶= 𝜏

𝑘
𝑣

𝜎
𝑗
𝑣

𝑚
𝑗
𝑘

𝑚

= 𝜏

𝑘
𝑣

𝜎
𝑗
𝑣

𝑚
𝑗
𝑘

𝑚

= 𝐇(𝑘 + 𝑗, (𝑃𝜎 ⊗ 𝟙𝑘)𝑃𝜏 )
= 𝐇((𝑘, 𝑃𝜏 ) # (𝑗, 𝑃𝜎)) .

The functor𝐇 is unique because any other prop morphism 𝐅∶ 𝖻𝗈𝗎𝗇𝖽𝖯 → 𝖯 such that 𝐅(1, 𝟙1) = 𝑣must, byfunctoriality of 𝐅, coincide with𝐇.
𝐅(𝑘, 𝑃𝜏 )
= 𝐅((0, 𝑃𝜏 ) # ((0, 𝟙𝑚)⊗ (𝑘, 𝟙𝑘)))
= 𝐅(𝜏 # (𝟙𝑚 ⊗ (1, 𝟙1)𝑘))
= 𝐅(𝜏) # (𝐅(𝟙𝑚)⊗ 𝐅(1, 𝟙1)𝑘)
= 𝜏 # (𝟙𝑚 ⊗ 𝑣𝑘)

∶=𝐇(𝑘, 𝑃𝜏 )

The prop of graphs is the coproduct of that of adjacency matrices and that of vertices. Coproducts ofprops presented by generators and equations are presented by the disjoint union of the generators and ofthe equations of the components [Lac04] (see also [Zan15, Proposition 2.11]).

Definition 4.42. The prop of graphs𝖡𝖦𝗋𝖺𝗉𝗁 is the coproduct of the props𝖠𝖽𝗃 and𝖵𝖾𝗋𝗍,𝖡𝖦𝗋𝖺𝗉𝗁∶= 𝖠𝖽𝗃+𝖵𝖾𝗋𝗍.Its generators and equations are in Figures 4.3 to 4.5.

Example 4.43. The string diagram below on the left is a morphism 1 → 1 in 𝖡𝖦𝗋𝖺𝗉𝗁 that represents a graphwith two vertices connected by an edge. The vertices are also both connected to the right boundary, whileonly one of them is connected to the left boundary. This corresponds to the informal drawing of the graphbelow on the right.

⇝

As with the isomorphism between the props of adjacency matrices, the isomorphism𝖬𝖦𝗋𝖺𝗉𝗁 ≅ 𝖡𝖦𝗋𝖺𝗉𝗁gives a normal form for morphisms in 𝖡𝖦𝗋𝖺𝗉𝗁. This is the coproduct of the isomorphisms 𝜙∶ 𝖬𝖠𝖽𝗃 ≅ 𝖠𝖽𝗃
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and 𝜓 ∶ 𝖻𝗈𝗎𝗇𝖽𝖯 ≅ 𝖵𝖾𝗋𝗍.

𝜃∶ ([𝐺] , 𝐿, 𝑅, 𝑃 , [𝑆]) →

𝑘𝐺

𝐿

𝑅

𝑃

𝑆
𝑛

𝑚

Theorem 4.44. The prop of graphs 𝖡𝖦𝗋𝖺𝗉𝗁 is isomorphic to𝖬𝖦𝗋𝖺𝗉𝗁.
Proof. By Proposition 4.30, the prop 𝖬𝖦𝗋𝖺𝗉𝗁 is the coproduct of 𝖬𝖠𝖽𝗃 and 𝖻𝗈𝗎𝗇𝖽𝖯. The prop 𝖬𝖠𝖽𝗃 is iso-morphic to𝖠𝖽𝗃 by Theorem 4.39 and the prop 𝖻𝗈𝗎𝗇𝖽𝖯 is isomorphic to 𝖵𝖾𝗋𝗍 by Proposition 4.41. These implythat𝖬𝖦𝗋𝖺𝗉𝗁 is isomorphic to the coproduct 𝖡𝖦𝗋𝖺𝗉𝗁 of 𝖠𝖽𝗃 and 𝖵𝖾𝗋𝗍 (Definition 4.42).
The operations for clique width and rank width

This section repeats the prodedure of Section 4.1 for clique and rank widths. It takes the operations forclique width of Definition 2.35 introduced by Courcelle and Olariu [CO00] and the operations for rank widthof Definition 2.56 introduced by Courcelle and Kanté [CK07], and examines them through a categorical lens.This time, the monoidal category 𝖡𝖦𝗋𝖺𝗉𝗁 specifies the categorical algebra and the operations for cliqueand rank widths derive from compositions and monoidal products in 𝖡𝖦𝗋𝖺𝗉𝗁. This correspondence definesfunctions from graphs with labels and graphs with multiple labels to morphisms 𝑛 → 0 in 𝖡𝖦𝗋𝖺𝗉𝗁. An 𝑛-labelled graph (𝐺, 𝑙) corresponds to the morphism (

[𝐺] , 𝐿, ¡, !, [( )]),where the entry (𝑖, 𝑗) of the matrix 𝐿is 1 if and only if 𝑙(𝑖) = 𝑗. The matrix𝐿 is composed only of comonoid operations and symmetries. Similarly,a graph (𝐺,𝐵) with multiple 𝑛-labels corresponds to the morphism (

[𝐺] , 𝐵, ¡, !, [( )]).

(𝐺, 𝑙) →
𝑘𝐺

𝐿𝑛

and (𝐺,𝐵) →
𝑘𝐺

𝐵𝑛

The various presentations of the operations for clique width [CER93; CO00; CV03] and rank width [CK07;CK09] define equivalent complexity measures. This becomes apparent when we express these operations ascompositions and monoidal products in 𝖡𝖦𝗋𝖺𝗉𝗁 and its categorical structure becomes the canonical choicefor the operations that define clique width and rank width. Chapter 6 proves this in detail.The generating graphs for cliquewidth and rankwidth are the samemorphisms in𝖡𝖦𝗋𝖺𝗉𝗁. The 1-labelledempty graph ∅1 is the discard map 1 ∶ 1 → 0, while the 1-labelled single vertex graph 𝗏1 is the vertexgenerator 𝗏1 ∶ 1 → 0.
∅1 → 1 and 𝗏1 → 1

The operations for clique width derive from the categorical structure. The renaming 𝖱𝖾𝗇𝖺𝗆𝖾𝑛𝑗→𝑖(𝐺, 𝑙)of label 𝑗 to label 𝑖 corresponds to precomposing the morphism 𝑔 that corresponds to the graph (𝐺, 𝑙) witha matrix 𝑑𝑖,𝑗 ∶ 𝑛→ 𝑛 + 1 that joins the 𝑖𝑡ℎ and 𝑗𝑡ℎ outputs.

𝖱𝖾𝗇𝖺𝗆𝖾𝑛𝑗→𝑖(𝐺, 𝑙) → 𝑔𝑑𝑖,𝑗𝑛
𝑛 + 1 where 𝑑𝑖,𝑗∶=

𝑖𝑡ℎ
𝑖𝑡ℎ

𝑗𝑡ℎ

⋮

⋮

⋮

⋮

⋮

⋮



68 CHAPTER 4. INTERLUDE: TWO PERSPECTIVES ON GRAPHS
The creation of edges 𝖤𝖽𝗀𝖾𝑛𝑖,𝑗(𝐺, 𝑙) between the labels 𝑖 and 𝑗 is also a precomposition. We compose the
morphism 𝑎𝑖,𝑗 ∶ 𝑛 → 𝑛, which connects the 𝑖𝑡ℎ and 𝑗𝑡ℎ outputs through a cup, with the morphism 𝑔 thatcorresponds to (𝐺, 𝑙).

𝖤𝖽𝗀𝖾𝑛𝑖,𝑗(𝐺, 𝑙) → 𝑔𝑎𝑖,𝑗𝑛
𝑛 where 𝑎𝑖,𝑗∶=

𝑖𝑡ℎ

𝑗𝑡ℎ

⋮

⋮

⋮

⋮

⋮

⋮

The disjoint union (𝐺, 𝑙)+(𝐻, 𝑙′) of an𝑚-labelled graph (𝐺, 𝑙) and an 𝑛-labelled graph (𝐻, 𝑙′) is themonoidalproduct 𝑔 ⊗ ℎ of the corresponding morphisms.

(𝐺, 𝑙) + (𝐻, 𝑙′) →

𝑔

ℎ

𝑚

𝑛

These operations together are as expressive as the operation of precompositionwith a class of vertex-lessmorphisms in 𝖡𝖦𝗋𝖺𝗉𝗁. In fact, these operations can construct all morphisms 𝑛→ 0where the connection tothe left boundary is a matrix 𝐿 only formed by the comonoid operations.The operations for rank width are also derived from compositions and monoidal products in 𝖡𝖦𝗋𝖺𝗉𝗁.The linear recolouring 𝖱𝖾𝖼𝗈𝗅𝑀 (𝐺,𝐵) of the graph (𝐺,𝐵) with multiple labels by a matrix𝑀 corresponds toprecomposing 𝑔, the morphism representing (𝐺,𝐵), with the matrix𝑀 .
𝖱𝖾𝖼𝗈𝗅𝑀 (𝐺,𝐵) → 𝑔𝑀𝑛

𝑛 + 1

The bilinear product (𝐺,𝐵) +𝑀,𝑃 ,𝑁 (𝐻,𝐶) of two graphs (𝐺,𝐵) and (𝐻,𝐶)with multiple labels is the com-position that connects their corresponding morphisms, 𝑔 and ℎ, through 𝑃 and precomposes𝑀 and𝑁 tothe labels of 𝑔 and ℎ.

(𝐺,𝐵) +𝑀,𝑃 ,𝑁 (𝐻,𝐶) →

𝑔

ℎ

𝑀

𝑁

𝑃
𝑙

𝑚

𝑛

The operations of linear recolouring and bilinear product together define the operation of precomposi-tion with a vertex-less morphism in 𝖡𝖦𝗋𝖺𝗉𝗁. In fact, these operations can construct all morphisms 𝑛 → 0 in
𝖡𝖦𝗋𝖺𝗉𝗁.



Chapter 5

A Monoidal Algebra for Branch Width

Different categorical algebras for graphs determine different composition operations. Compositions in thecategory of cospans of hypergraphs join two hypergraphs by identifying some of their vertices. Section 4.1derived the operations for tree width from compositions andmonoidal products in this category. Similarly, inthe category of bialgebra graphs, composing two graphsmeans connecting them along some dangling edges.Section 4.3 derived the operations for clique and rank widths from compositions and monoidal products inthis category. What does monoidal width measure in these two cases?Monoidal width in cospans of hypergraphs is equivalent to tree width. As recalled in Section 2.2, treewidth [RS86] is based on the corresponding notion of tree decomposition, whose underlying compositionalalgebra is captured by cospan composition, and measures the structural complexity of graphs. The mainresults of this chapter andChapter 6 validate the use ofmonoidalwidth as ameasure of structural complexity.Tree width and branch width are equivalent graph complexity measures. We leverage this fact to showequivalence between tree width and monoidal width in cospans of hypergraphs. Section 5.1 defines an in-ductive version of branch decompositions as an intermediate step towards the main result in Section 5.2,Theorem 5.16.
5.1 Inductive branch decompositions
Similarly to the Courcelle’s graph expressions recalled in Section 2.3 ([BC87, Definition 3.4] and [Cou90,Definition 2.7]), monoidal decompositions in cospans of hypergraphs are also terms for hypergraphs, butwhere the operations are compositions and monoidal product in 𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗. This contrasts withthe more combinatorial flavour of branch decompositions and makes translating between these two ap-proaches technically involved. Following the intuitions behind Courcelle’s proof of equivalence betweentree width and width of graph expressions [Cou92a, Theorem 2.2], we introduce inductive branch decom-positions as intermediate step between branch and monoidal decompositions. These add to branch de-compositions the algebraic flavour of monoidal decompositions by relying on the inductive data structureof binary trees. In the same way that graph expressions define graphs with sources [BC87, Proposition 3.6],which appeared as rooted hypergraphs in Robertson and Seymour [RS90, Section 3], inductive decompo-sitions define hypergraphs with sources. These are the unlabelled version of the relational structures withconstants recalled in Definition 2.53. Since tree and branch decompositions of relational structures are treeand branch decompositions of their underlying hypergraph, we will work with the latter and consider thecategory 𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗ of discrete cospans of hypergraphs instead of the category 𝗌𝖲𝗍𝗋𝗎𝖼𝗍𝜏 of discretecospans of relational structures.
Definition 5.1. A hypergraph with sources is a pair Γ = (𝐺,𝑋) of a hypergraph 𝐺 = (𝑉 ,𝐸) and a subset

69
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𝑋 ⊆ 𝑉 of its vertices, called the sources. Given two graphs with sources Γ = (𝐺,𝑋) and Γ′ = (𝐺′, 𝑋′), wesay that Γ′ is a subgraph of Γ whenever 𝐺′ is a subgraph of 𝐺.

Note that the sources of a subhypergraph Γ′ of Γ need not to appear as sources of Γ, nor vice versa. Infact, if Γ is obtained by identifying all the sources of a hypergraph Γ1 with some of the sources of anotherhypergraph Γ2, the sources of Γ and Γ1 will be disjoint. A hypergraph with sources Γ = (𝐺,𝑋) can be seenas a morphism 𝑔∶ 𝑋 → ∅ in 𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗: 𝑔 =∶ 𝑋 → 𝐺 ← ∅ ∶, where the legs of the cospan are
𝜄 ∶ 𝑋 → 𝑉 and ¡ ∶ ∅ → 𝑉 .
Example 5.2. Sources are marked vertices in the graph and are thought of as an interface that can be gluedwith that of another graph. Two graphs sharing the sources, as illustrated below, can be “glued together”:

glued with gives .

These two graphs correspond to twomorphisms 𝑔1, 𝑔2 ∶ 1 → ∅ in𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗ that can be composedto obtain the rightmost graph 1 # (𝑔1 ⊗ 𝑔2).

𝑔1 = 𝑔2 = ∪1 # (𝑔1 ⊗ 𝑔2) =

Definition 5.3. A binary tree 𝑇 ∈ Γ for a hypergraph Γ is defined inductively.
𝑇 ∶∶= (Γ) if |𝖾𝖽𝗀𝖾𝗌(Γ)| ≤ 1

∣ (𝑇1—Γ—𝑇2) if 𝑇1 ∈ Γ1 , 𝑇2 ∈ Γ2 and Γ1,Γ2 are subgraphs of Γ
An inductive branch decomposition of a hypergraph with sources Γ is a binary tree 𝑇 ∈ Γ satisfyingsome conditions such that, identifying the common sources in Γ1 and Γ2, we obtain Γ.

Definition 5.4. An inductive branch decomposition of a hypergraph with sources Γ = ((𝑉 ,𝐸), 𝑋) is a binarytree 𝑇 ∈ Γ where either Γ has at most one edge and 𝑇 = (Γ), or 𝑇 = (𝑇1—Γ—𝑇2) and 𝑇𝑖 ∈ 𝑇Γ𝑖 areinductive branch decompositions of subhypergraphs Γ𝑖 = ((𝑉𝑖, 𝐸𝑖), 𝑋𝑖) of Γ such that:• The edges are partitioned in two, 𝐸 = 𝐸1 ⊔ 𝐸2, and 𝑉 = 𝑉1 ∪ 𝑉2;• The sources are those vertices shared with the original sources as well as those shared with the othersubhypergraph,𝑋𝑖 = (𝑉1 ∩ 𝑉2) ∪ (𝑋 ∩ 𝑉𝑖).
Remark 5.5. Note that 𝖾𝗇𝖽𝗌(𝐸𝑖) ⊆ 𝑉𝑖 and that not all subtrees of a decomposition 𝑇 are themselves de-compositions: only those 𝑇 ′ that contain all the nodes in 𝑇 that are below the root of 𝑇 ′. We call these fullsubtrees, 𝑇 ′ ≤ 𝑇 , and indicate with 𝜆(𝑇 ′) the subhypergraph of Γ that 𝑇 ′ is a decomposition of. We willsometimes write Γ𝑖 = 𝜆(𝑇𝑖), 𝑉𝑖 = 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(Γ𝑖) and𝑋𝑖 = 𝗌𝗈𝗎𝗋𝖼𝖾𝗌(Γ𝑖). Then,

𝗌𝗈𝗎𝗋𝖼𝖾𝗌(Γ𝑖) = (𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(Γ1) ∩ 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(Γ2)) ∪ (𝗌𝗈𝗎𝗋𝖼𝖾𝗌(Γ) ∩ 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(Γ𝑖)) .

At every step in a decomposition, two graphs with sources are composed along the common boundaryidentifying some sources of one graph with some sources of the other. The size of the biggest of theseboundaries determines the width of the decomposition.
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Definition 5.6. Thewidth of an inductive branch decomposition 𝑇 of a hypergraph with sources Γ = (𝐺,𝑋),with sources𝑋, is defined inductively:

𝗐𝖽(𝑇 )∶= |𝑋| if 𝑇 = (Γ) ,
| max{𝗐𝖽(𝑇1),𝗐𝖽(𝑇2), |𝑋|} if 𝑇 = (𝑇1—Γ—𝑇2) .

Expanding this expression, we obtain
𝗐𝖽(𝑇 ) = max

𝑇 ′ full subtree of 𝑇 |𝗌𝗈𝗎𝗋𝖼𝖾𝗌(𝜆(𝑇
′))|.

Equivalence with branch width

Inductive branch width coincides with branch width (Proposition 5.10). We show their equivalence by con-structing, in Lemma 5.8, a branch decomposition from an inductive one and vice versa, in Lemma 5.9, pre-serving the width. For defining these mappings, we find an explicit expression for the set of sources ofsubgraphs 𝜆(𝑇0) corresponding to full subtrees 𝑇0 of a decomposition 𝑇 .
Lemma 5.7. Let 𝑇 be an inductive branch decomposition of a hypergraph with sources Γ and 𝑇0 be a fullsubtree of 𝑇 . Then,

𝗌𝗈𝗎𝗋𝖼𝖾𝗌(𝜆(𝑇0)) = 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇0)) ∩
⎛

⎜

⎜

⎝

𝑋 ∪
⋃

𝑇 ′≹𝑇0

𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇 ′))
⎞

⎟

⎟

⎠

,

where 𝑇 ′ ≹ 𝑇0 denotes a full subtree 𝑇 ′ of 𝑇 whose intersection with 𝑇0 is empty.
Proof. Proceed by induction on the decomposition tree 𝑇 . If it is a leaf, 𝑇 = (Γ), then its subtree is also aleaf, 𝑇0 = (Γ), and we are done.If 𝑇 = (𝑇1—Γ—𝑇2), then either 𝑇0 is a full subtree of 𝑇1, or it is a full subtree of 𝑇2 or it coincides with 𝑇 .If 𝑇0 coincides with 𝑇 , then their sources coincide and the statement holds because 𝗌𝗈𝗎𝗋𝖼𝖾𝗌(𝜆(𝑇0)) = 𝑋 =
𝑉 ∩𝑋. Suppose that 𝑇0 is a full subtree of 𝑇1. Then, by applying the induction hypothesis, Remark 5.5, andusing the fact that 𝜆(𝑇0) ⊆ 𝜆(𝑇1), we compute its sources

𝗌𝗈𝗎𝗋𝖼𝖾𝗌(𝜆(𝑇0))

= 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇0)) ∩
⎛

⎜

⎜

⎝

𝗌𝗈𝗎𝗋𝖼𝖾𝗌(𝜆(𝑇1)) ∪
⋃

𝑇 ′≤𝑇1,𝑇 ′≹𝑇0

𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇 ′))
⎞

⎟

⎟

⎠

= 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇0)) ∩

(

(

𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇1)) ∩ (𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇2)) ∪𝑋)
)

∪
⋃

𝑇 ′
𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇 ′))

)

= 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇0)) ∩
⎛

⎜

⎜

⎝

𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇2)) ∪𝑋 ∪
⋃

𝑇 ′≤𝑇1,𝑇 ′≹𝑇0

𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇 ′))
⎞

⎟

⎟

⎠

= 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇0)) ∩
⎛

⎜

⎜

⎝

𝑋 ∪
⋃

𝑇 ′≤𝑇 ,𝑇 ′≹𝑇0

𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇 ′))
⎞

⎟

⎟

⎠

A similar computation can be done if 𝑇0 is a full subtree of 𝑇2.
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Given an inductive branch decomposition 𝑇 , the branch decomposition †(𝑇 ) is obtained by forgettingthe labelling of its internal nodes and which node corresponds to the root.

Lemma 5.8. Let 𝑇 be an inductive branch decomposition of a hypergraph with sources Γ = (𝐺,𝑋). Then,there is a branch decomposition †(𝑇 ) of its underlying hypergraph 𝐺 of bounded width: 𝗐𝖽(†(𝑇 )) ≤
𝗐𝖽(𝑇 ).
Proof. A binary tree is, in particular, a subcubic tree. Then, we can define 𝑌 to be the unlabelled treeunderlying 𝑇 . If the label of a leaf 𝑙 of 𝑇 is a subhypergraph of Γ with one edge 𝑒𝑙, then we keep theleaf, otherwise, if the subhypergraph is discrete, we remove the leaf 𝑙 from 𝑌 . Then, there is a bijection
𝑏∶ 𝗅𝖾𝖺𝗏𝖾𝗌(𝑌 ) → 𝖾𝖽𝗀𝖾𝗌(𝐺) such that 𝑏(𝑙)∶= 𝑒𝑙. Then, (𝑌 , 𝑏) is a branch decomposition of 𝐺 and we candefine †(𝑇 )∶= (𝑌 , 𝑏).By construction, if 𝑒 ∈ 𝖾𝖽𝗀𝖾𝗌(𝑌 ) then 𝑒 ∈ 𝖾𝖽𝗀𝖾𝗌(𝑇 ). Let {𝑣,𝑤} = 𝖾𝗇𝖽𝗌(𝑒) with 𝑣 parent of 𝑤 in 𝑇and let 𝑇𝑤 the full subtree of 𝑇 with root 𝑤. Let {𝐸𝑣, 𝐸𝑤} be the (non-trivial) partition of 𝐸 induced by
𝑒. Then, for the edges sets, 𝐸𝑤 = 𝖾𝖽𝗀𝖾𝗌(𝜆(𝑇𝑤)) and 𝐸𝑣 =

⋃

𝑇 ′≹𝑇𝑤
𝖾𝖽𝗀𝖾𝗌(𝜆(𝑇 ′)), and, for the vertices sets,

𝖾𝗇𝖽𝗌(𝐸𝑤) ⊆ 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇𝑤)) and 𝖾𝗇𝖽𝗌(𝐸𝑣) ⊆
⋃

𝑇 ′≹𝑇𝑤
𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇 ′)). Using these inclusions and applyingLemma 5.7,

𝗈𝗋𝖽(𝑒) 𝗐𝖽(𝑌 , 𝑏)
∶= |𝖾𝗇𝖽𝗌(𝐸𝑤) ∩ 𝖾𝗇𝖽𝗌(𝐸𝑣)| ∶= max

𝑒∈𝖾𝖽𝗀𝖾𝗌(𝑌 )
𝗈𝗋𝖽(𝑒)

≤ |𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇𝑤)) ∩
⋃

𝑇 ′≹𝑇𝑤

𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇 ′))| ≤ max
𝑇 ′<𝑇

|𝗌𝗈𝗎𝗋𝖼𝖾𝗌(𝜆(𝑇 ′))|

≤ |𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇𝑤)) ∩ (𝑋 ∪
⋃

𝑇 ′≹𝑇𝑤

𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇 ′)))| ≤ max
𝑇 ′≤𝑇

|𝗌𝗈𝗎𝗋𝖼𝖾𝗌(𝜆(𝑇 ′))|

= |𝗌𝗈𝗎𝗋𝖼𝖾𝗌(𝜆(𝑇𝑤))| = 𝗐𝖽(𝑇 )

Given a branch decomposition (𝑌 , 𝑏) of a hypergraph𝐺, we pick an edge of 𝑌 and subdivide it to add anextra vertex which will be the root. The labelling of the internal nodes comes as a consequence and definean inductive branch decomposition (𝑌 , 𝑏) of the same width.
Lemma 5.9. Let (𝑌 , 𝑏) be a branch decomposition of a hypergraph 𝐺 and let Γ = (𝐺,𝑋) be a hypergraphwith sources 𝑋 whose underlying hypergraph is 𝐺. Then, there is a branch decomposition (𝑌 , 𝑏) of Γ ofbounded width: 𝗐𝖽((𝑌 , 𝑏)) ≤ 𝗐𝖽(𝑌 , 𝑏) + |𝑋|.
Proof. Proceed by induction on |𝖾𝖽𝗀𝖾𝗌(𝑌 )|. If 𝑌 has no edges, then either 𝐺 has no edges and (𝑌 , 𝑏) = ()or 𝐺 has only one edge 𝑒𝑙 and (𝑌 , 𝑏) = (𝑒𝑙). In either case, define (𝑌 , 𝑏)∶= (Γ) and 𝗐𝖽((𝑌 , 𝑏))∶= |𝑋| ≤
𝗐𝖽(𝑌 , 𝑏) + |𝑋|.

If 𝑌 has at least one edge 𝑒, then 𝑌 = 𝑌1
𝑒—𝑌2 with 𝑌𝑖 a subcubic tree. Let 𝐸𝑖 = 𝑏(𝗅𝖾𝖺𝗏𝖾𝗌(𝑌𝑖)) be the setsof edges of𝐺 indicated by the leaves of 𝑌𝑖. Then,𝐸1 ⊔𝐸2 = 𝐸. By induction hypothesis, there are inductivebranch decompositions 𝑇𝑖∶= (𝑌𝑖, 𝑏𝑖) of Γ𝑖 = (𝐺𝑖, 𝑋𝑖), where 𝑉1∶= 𝖾𝗇𝖽𝗌(𝐸1), 𝑉2∶= 𝖾𝗇𝖽𝗌(𝐸2) ∪ (𝑉 ⧵ 𝑉1),

𝑋𝑖∶= (𝑉1 ∩ 𝑉2) ∪ (𝑉𝑖 ∩ 𝑋) and 𝐺𝑖∶= (𝑉𝑖, 𝐸𝑖). Then, the tree (𝑌 , 𝑏)∶= (𝑇1—Γ—𝑇2) is an inductive branchdecomposition of Γ and, applying Lemma 5.7,
𝗐𝖽((𝑌 , 𝑏))
∶= max{𝗐𝖽(𝑇1), |𝑋|,𝗐𝖽(𝑇2)}
= max
𝑇 ′≤𝑇

|𝗌𝗈𝗎𝗋𝖼𝖾𝗌(𝜆(𝑇 ′))|
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≤ max
𝑇 ′≤𝑇

|𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇 ′)) ∩ 𝖾𝗇𝖽𝗌(𝐸 ⧵ 𝖾𝖽𝗀𝖾𝗌(𝜆(𝑇 ′)))| + |𝑋|

= max
𝑒∈𝖾𝖽𝗀𝖾𝗌(𝑌 )

𝗈𝗋𝖽(𝑒) + |𝑋|

∶=𝗐𝖽(𝑌 , 𝑏) + |𝑋|

Combining Lemmas 5.8 and 5.9, we obtain the equivalence between branch width and inductive branchwidth.
Proposition 5.10. For hypergraphs with no sources, branch width and inductive branch width coincide.

5.2 Bounding branch width
Monoidal width in cospans of hypergraphs is equivalent to branch width (Theorem 5.16) and, as a conse-quence, it is also equivalent to tree width (Corollary 5.17). In particular, the monoidal width of a hypergraphis at most its branch width +1 and at least half of it. Proposition 5.13 shows the upper bound by mapping abranch decomposition to a monoidal decomposition of the same hypergraph with bounded width. Similarly,Proposition 5.15 defines a branch decomposition from a monoidal decomposition to show the lower bound.The instantiation ofmonoidalwidth in cospans of hypergraphs needs an appropriateweight function. Thewidth of a tree decomposition depends on the number of vertices contained in each bag, thus we define theweight function for 𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗ to count the number of vertices of the apex graph in each cospan.
Definition 5.11. For a morphism 𝑔∶ 𝑋 → 𝑌 in 𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗, the weight function 𝗐 is defined as
𝗐(𝑔)∶= |𝑉 |, where 𝑉 is the set of vertices of the apex of 𝑔, i.e. 𝑔 =∶ 𝑋 → 𝐺 ← 𝑌 ∶and 𝐺 = (𝑉 ,𝐸).

With this definition, the identity on 𝑋 weights |𝑋| and compositions along 𝑋 cost |𝑋|. This definitiongives a weight function.
Lemma 5.12. The function 𝗐 in Definition 5.11 satisfies the conditions in Definition 3.3 for a weight functionin the monoidal category 𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗.
Proof. For 𝑓 ∶ 𝑋 → 𝑌 , 𝑔∶ 𝑌 → 𝑍 and 𝑓 ′ ∶ 𝑋′ → 𝑌 ′ with sets of vertices 𝑉 ,𝑊 and 𝑉 ′, we can bound theweights of 𝑓 # 𝑔 and 𝑓 ⊗ 𝑓 ′.

𝗐(𝑓 #𝑌 𝑔) 𝗐(𝑓 ⊗ 𝑓 ′)
∶= |𝑉 +𝑌 𝑊 | ∶= |𝑉 + 𝑉 ′

|

≤ |𝑉 | + |𝑊 | + |𝑌 | = |𝑉 | + |𝑉 ′
|

∶=𝗐(𝑓 ) + 𝗐(𝑔) + 𝗐(𝑌 ) ∶=𝗐(𝑓 ) + 𝗐(𝑓 ′)

A branch decomposition divides a hypergraph into one-edge subhypergraphs. Given a branch decompo-sition of a hypergraph Γ with sources, the corresponding monoidal decomposition is defined by taking allthe one-edge subhypergraphs and composing them according to the tree structure of the branch decompo-sition. For example, the monoidal decomposition shown below right corresponds to the inductive branchdecomposition of 3-clique at its left: the three edge generators are connected following the shape ofthe branch decomposition.
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†

→

Proposition 5.13. Let 𝑇 be an inductive branch decomposition of a hypergraph with sources Γ = (𝐺,𝑋). Let
𝑔∶= 𝜄 ∶ 𝑋 → 𝐺 ← ∅ ∶be the corresponding cospan and let 𝛾(𝐺) indicate the hyperedge size of 𝐺. Then,there is a monoidal decomposition †(𝑇 ) ∈ 𝐷𝑔 of bounded width: 𝗐𝖽(†(𝑇 )) ≤ max{𝗐𝖽(𝑇 ) + 1, 𝛾(𝐺)}.
Proof. Let 𝐺 = (𝑉 ,𝐸) and proceed by induction on the decomposition tree 𝑇 . If the tree 𝑇 = (Γ) iscomposed of only one leaf, then the label Γ of this leaf must have at most one hyperedge with 𝛾(𝐺) end-points and 𝗐𝖽(𝑇 )∶= |𝑋|. We define the corresponding monoidal decomposition to also consist of only aleaf, †(𝑇 )∶= (𝑔), and obtain the desired bound 𝗐𝖽(†(𝑇 )) = max{|𝑋|, 𝛾(𝐺)} = max{𝗐𝖽(𝑇 ), 𝛾(𝐺)}.If 𝑇 = (𝑇1—Γ—𝑇2), then, by definition of inductive branch decomposition, 𝑇 is composed of two sub-trees 𝑇1 and 𝑇2 that give branch decompositions of Γ1 = (𝐺1, 𝑋1) and Γ2 = (𝐺2, 𝑋2). There are three con-ditions imposed by the definition on these subgraphs𝐺𝑖 = (𝑉𝑖, 𝐸𝑖): 𝐸 = 𝐸1 ⊔𝐸2 with𝐸𝑖 ≠ ∅, 𝑉1 ∪ 𝑉2 = 𝑉 ,and 𝑋𝑖 = (𝑉1 ∩ 𝑉2) ∪ (𝑋 ∩ 𝑉𝑖). Let 𝑔𝑖 = 𝜄 ∶ 𝑋𝑖 → 𝐺𝑖 ← ∅ ∶be the morphism in 𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗corresponding to Γ𝑖. Then, we decompose 𝑔 in terms of identities, the structure of 𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗, andits subgraphs 𝑔1 and 𝑔2, separating their boundaries into𝑋1 ⧵𝑋2, (𝑋1∩𝑋2)⧵𝑋,𝑋1∩𝑋2∩𝑋, and𝑋2 ⧵𝑋1:

𝑔 =
𝑔1

𝑔2

By induction hypothesis, there are monoidal decompositions†(𝑇𝑖) of the morphisms 𝑔𝑖 of bounded width:
𝗐𝖽(†(𝑇𝑖)) ≤ max{𝗐𝖽(𝑇𝑖) + 1, 𝛾(𝐺𝑖)}. By Lemma 3.11, there is a monoidal decomposition (†(𝑇1)) of themorphism in the above dashed box of bounded width: 𝗐𝖽((†(𝑇1))) ≤ max{𝗐𝖽(†(𝑇1)), |𝑋1|+ 1}. Usingthis decomposition, we can define the monoidal decomposition given by the cuts in the figure above.

†(𝑇 )∶= (((†(𝑇1))—⊗—𝟙𝑋2⧵𝑋1
)— #𝑋2

—†(𝑇2)).

We can bound its width by applying Lemma 3.11, the induction hypothesis and the relevant definitions ofwidth (|𝑋𝑖| ≤ 𝗐𝖽(𝑇𝑖) by Definitions 5.6 and 5.11).
𝗐𝖽(†(𝑇 ))

∶= max{𝗐𝖽((†(𝑇1))),𝗐𝖽(†(𝑇2)), |𝑋2|}

≤ max{𝗐𝖽(†(𝑇1)),𝗐𝖽(†(𝑇2)), |𝑋1| + 1, |𝑋2|}
≤ max{𝗐𝖽(𝑇1) + 1, 𝛾(𝐺1),𝗐𝖽(𝑇2) + 1, 𝛾(𝐺2), |𝑋1| + 1, |𝑋2|}
≤ max{max{𝗐𝖽(𝑇1),𝗐𝖽(𝑇2), |𝑋1|, |𝑋2|} + 1, 𝛾(𝐺1), 𝛾(𝐺2)}
≤ max{max{𝗐𝖽(𝑇1),𝗐𝖽(𝑇2), |𝑋|} + 1, 𝛾(𝐺)}

∶=max{𝗐𝖽(𝑇 ) + 1, 𝛾(𝐺)}
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The mapping from monoidal decompositions to inductive branch decompositions follows a similar ideato the previous one and also proceeds by induction on the decomposition tree. It requires some extra bu-reaucracy to handle the case of composition nodes, for which the following lemma is needed.

Lemma 5.14. Consider a hypergraph with sources Γ = ((𝑉 ,𝐸), 𝑋), a function 𝜙∶ 𝑉 → 𝑊 and define thehypergraph with sources 𝜙(Γ)∶= ((𝜙(𝑉 ), 𝐸), 𝜙(𝑋)). Suppose there is an inductive branch decomposition 𝑇of Γ. Then, there is an inductive branch decomposition 𝜙(𝑇 ) of 𝜙(Γ) of bounded width: 𝗐𝖽(𝜙(𝑇 )) ≤ 𝗐𝖽(𝑇 ).
Proof. Proceed by induction on the decomposition tree 𝑇 . If 𝑇 = (Γ) is just a leaf, then define𝜙(𝑇 )∶= (𝜙(Γ))to be a leaf as well. Its width is bounded by that of 𝑇 : 𝗐𝖽(𝜙(𝑇 ))∶= |𝜙(𝑋)| ≤ |𝑋| ∶=𝗐𝖽(𝑇 ).Otherwise, 𝑇 = (𝑇1—Γ—𝑇2) has two subtrees, where 𝑇𝑖 is an inductive branch decomposition of Γ𝑖 =
((𝑉𝑖, 𝐸𝑖), 𝑋𝑖). By the definition of inductive branch decomposition (Definition 5.4),𝐸 = 𝐸1⊔𝐸2, 𝑉 = 𝑉1∪𝑉2and 𝑋𝑖 = (𝑉1 ∩ 𝑉2) ∪ (𝑋 ∩ 𝑉𝑖). Denote with 𝜙1 ∶ 𝑉1 → 𝑊 and 𝜙2 ∶ 𝑉2 → 𝑊 the compositions of 𝜙 with
the inclusions 𝜄1 ∶ 𝑉1 → 𝑉 and 𝜄2 ∶ 𝑉2 → 𝑉 . By induction hypothesis, there are inductive branch decompo-sitions 𝜙𝑖(𝑇𝑖) of 𝜙𝑖(Γ𝑖) of bounded width, 𝗐𝖽(𝜙𝑖(𝑇𝑖)) ≤ 𝗐𝖽(𝑇𝑖). Define 𝜙(𝑇 )∶= (𝜙1(𝑇𝑖)—𝜙(Γ)—𝜙2(𝑇2)) bycombining the inductive branch decompositions of 𝜙1(Γ1) and 𝜙2(Γ2). This is an inductive branch decom-position of 𝜙(Γ) because 𝐸 = 𝐸1 ⊔ 𝐸2, 𝜙(𝑉 ) = 𝜙(𝑉1 ∪ 𝑉2) = 𝜙(𝜄1(𝑉1) ∪ 𝜄2(𝑉2)) = 𝜙1(𝑉1) ∪ 𝜙2(𝑉2), and
𝜙𝑖(𝑋𝑖) = 𝜙𝑖((𝑉1 ∩ 𝑉2) ∪ (𝑋 ∩ 𝑉𝑖)) = 𝜙((𝑉1 ∩ 𝑉2) ∪ (𝑋 ∩ 𝑉𝑖)) = (𝜙(𝑉1) ∩ 𝜙(𝑉2)) ∪ (𝜙(𝑋) ∩ 𝜙(𝑉𝑖)). The widthof 𝜙(𝑇 ) is bounded by that of 𝑇 :

𝗐𝖽(𝜙(𝑇 ))
∶= max{𝗐𝖽(𝜙1(𝑇1)),𝗐𝖽(𝜙2(𝑇2)), |𝜙(𝑋)|}
≤ max{𝗐𝖽(𝑇1),𝗐𝖽(𝑇2), |𝑋|}

∶=𝗐𝖽(𝑇 )

Proposition 5.15. Let 𝑑 ∈ 𝐷𝑔 be a monoidal decomposition of a morphism 𝑔 = 𝑙∶ 𝑋 → 𝐺 ← 𝑌 ∶𝑟 in
𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗. Consider the hypergraph with sources Γ∶= (𝐺, 𝑙(𝑋) ∪ 𝑟(𝑌 )) corresponding to 𝑔. Then,there is an inductive branch decomposition(𝑑)ofΓof boundedwidth: 𝗐𝖽((𝑑)) ≤ 2⋅max{𝗐𝖽(𝑑), |𝑋|, |𝑌 |}.
Proof. Proceed by induction on 𝑑. If 𝑑 = (𝑔) is just a leaf, then define (𝑑) to be any inductive branchdecomposition of Γ. The width of an inductive branch decomposition of Γ is bounded by the number ofvertices ofΓ and, as a consequence, by thewidth of 𝑑: 𝗐𝖽((𝑑)) ≤ |𝑉 | ∶=𝗐𝖽(𝑑) ≤ 2⋅max{𝗐𝖽(𝑑), |𝑋|, |𝑌 |}.Suppose that 𝑑 = (𝑑1— #𝐶 —𝑑2) starts with a composition node. Then, 𝑔 = 𝑔1 # 𝑔2 for two morphisms
𝑔1 = 𝑙1 ∶ 𝑋 → 𝐺1 ← 𝐶 ∶𝑟1 and 𝑔2 = 𝑙2 ∶ 𝐶 → 𝐺2 ← 𝑌 ∶𝑟2.

𝑉

𝑉1 𝑉2

𝑋 𝐶 𝑌

⌟𝑗1 𝑗2

𝑙1

𝑙

𝑙2𝑟1

𝑞
𝑟2

𝑟

By induction hypothesis, there are inductive branch decompositions (𝑑1) and (𝑑2) of the hypergraphswith sources Γ1∶= (𝐺1, 𝑙1(𝑋) ∪ 𝑟1(𝐶)) and Γ2∶= (𝐺2, 𝑙2(𝐶) ∪ 𝑟2(𝑌 )) of bounded width: 𝗐𝖽((𝑑1)) ≤ 2 ⋅
max{𝗐𝖽(𝑑1), |𝑋|, |𝐶|} and 𝗐𝖽((𝑑2)) ≤ 2 ⋅max{𝗐𝖽(𝑑2), |𝑌 |, |𝐶|}. We apply Lemma 5.14 to the decompo-sitions (𝑑𝑖) and functions 𝑗𝑖 to obtain inductive branch decompositions 𝑗𝑖((𝑑𝑖)) of 𝑗𝑖(Γ𝑖) bounded width:
𝗐𝖽(𝑗𝑖((𝑑𝑖))) ≤ 𝗐𝖽((𝑑𝑖)). These two decompositions combine into an inductive branch decomposition
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(𝑑)∶= (𝑗1((𝑑1))—Γ—𝑗2((𝑑2))). This is, indeed, an inductive branch decomposition of Γ because it sat-isfies the condition on the edges and vertices, 𝐸 = 𝐸1 ⊔ 𝐸2 and 𝑉 = 𝑗1(𝑉1) ∪ 𝑗2(𝑉2), and the conditions onthe sources,

𝑗1(𝑙1(𝑋) ∪ 𝑟1(𝐶)) 𝑗2(𝑙2(𝐶) ∪ 𝑟2(𝑌 ))
= 𝑗1(𝑙1(𝑋)) ∪ 𝑗1(𝑟1(𝐶)) = 𝑗2(𝑙2(𝐶)) ∪ 𝑗2(𝑟2(𝑌 ))
= 𝑙(𝑋) ∪ 𝑞(𝐶) = 𝑞(𝐶) ∪ 𝑟(𝑌 )
= 𝑙(𝑋) ∪ (𝑗1(𝑉1) ∩ 𝑗2(𝑉2)) = (𝑗1(𝑉1) ∩ 𝑗2(𝑉2)) ∪ 𝑟(𝑌 )
= ((𝑙(𝑋) ∪ 𝑟(𝑌 )) ∩ 𝑗1(𝑉1)) ∪ (𝑗1(𝑉1) ∩ 𝑗2(𝑉2)) = ((𝑙(𝑋) ∪ 𝑟(𝑌 )) ∩ 𝑗2(𝑉2)) ∪ (𝑗1(𝑉1) ∩ 𝑗2(𝑉2))

in Definition 5.4. The width of (𝑑) is bounded.
𝗐𝖽((𝑑))
∶= max{𝗐𝖽(𝑗1((𝑑1))), |𝑙(𝑋) ∪ 𝑟(𝑌 )|,𝗐𝖽(𝑗2((𝑑2)))}
≤ max{𝗐𝖽((𝑑1)), |𝑙(𝑋)| + |𝑟(𝑌 )|,𝗐𝖽((𝑑2))}
≤ max{2𝗐𝖽(𝑑1), 2|𝑋|, 2|𝐶|, |𝑋| + |𝑌 |,𝗐𝖽(𝑑2), 2|𝐶|, 2|𝑌 |}
≤ 2 ⋅max{𝗐𝖽(𝑑1), |𝐶|,𝗐𝖽(𝑑2), |𝑋|, |𝑌 |}

∶=2 ⋅max{𝗐𝖽(𝑑), |𝑋|, |𝑌 |}

Suppose that 𝑑 = (𝑑1—⊗—𝑑2) starts with a monoidal product node. Then, 𝑔 = 𝑔1 ⊗ 𝑔2 for two mor-phisms 𝑔1 = 𝑙1 ∶ 𝑋1 → 𝐺1 ← 𝑌1 ∶𝑟1 and 𝑔2 = 𝑙2 ∶ 𝑋2 → 𝐺2 ← 𝑌2 ∶𝑟2. By induction hypothesis, thereare inductive branch decompositions (𝑑1) and (𝑑2) of the hypergraphs with sources Γ1∶= (𝐺1, 𝑙1(𝑋1) ∪
𝑟1(𝑌1)) and Γ2∶= (𝐺2, 𝑙2(𝑋2) ∪ 𝑟2(𝑌2)) of bounded width: 𝗐𝖽((𝑑1)) ≤ 2 ⋅ max{𝗐𝖽(𝑑1), |𝑋1|, |𝑌1|} and
𝗐𝖽((𝑑2)) ≤ 2 ⋅ max{𝗐𝖽(𝑑2), |𝑋2|, |𝑌2|}. These decompositions combine into an inductive branch decom-position(𝑑)∶= ((𝑑1)—Γ—(𝑑2)). This is, indeed, a decomposition of Γ because it satisfies the conditionsof Definition 5.4: 𝐸 = 𝐸1 ⊔𝐸2, 𝑉 = 𝑉1 ∪ 𝑉2 and 𝑙𝑖(𝑋𝑖) ∪ 𝑟𝑖(𝑌𝑖) = ((𝑙(𝑋) ∪ 𝑟(𝑌 )) ∩ 𝑉𝑖) ∪ (𝑉1 ∩ 𝑉2). The widthof (𝑑) is bounded.

𝗐𝖽((𝑑))
≤ max{𝗐𝖽((𝑑1)), |𝑙(𝑋) ∪ 𝑟(𝑌 )|,𝗐𝖽((𝑑2))}
≤ max{2𝗐𝖽(𝑑1), 2|𝑋1|, 2|𝑌1|, |𝑋| + |𝑌 |,𝗐𝖽(𝑑2), 2|𝑋2|, 2|𝑌2|}
≤ 2 ⋅max{𝗐𝖽(𝑑1),𝗐𝖽(𝑑2), |𝑋|, |𝑌 |}

∶=2 ⋅max{𝗐𝖽(𝑑), |𝑋|, |𝑌 |}

Theorem 5.16 summarises Propositions 5.10, 5.13 and 5.15.
Theorem5.16. Let𝐺 beagraphand 𝑔 =∶ ∅ → 𝐺 ← ∅ ∶be the correspondingmorphismof𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗.Then, 1

2 ⋅ 𝖻𝗐𝖽(𝐺) ≤ 𝗆𝗐𝖽(𝑔) ≤ 𝖻𝗐𝖽(𝐺) + 1.
With this result and Theorem 2.30, we obtain equivalence with tree width.

Corollary 5.17. Tree width is equivalent to monoidal width in 𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗.



Chapter 6

A Monoidal Algebra for Rank Width

Chapter 5 showed that composition in cospans of hypergraphs captures the operation that underlies treedecompositions. As a consequence, monoidal width in 𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗ is equivalent to tree width. Thischapter concerns rank width. As anticipated in Section 4.3, the operations for clique and rank widths derivefrom the categorical algebra of the prop 𝖡𝖦𝗋𝖺𝗉𝗁. Here, we show that the prop 𝖡𝖦𝗋𝖺𝗉𝗁 captures the algebraof composition underlying rank width, making monoidal width in this category equivalent to rank width and,as a consequence, to clique width.
Rank width relies on the corresponding notion of rank decomposition, which we recalled in Section 2.2.Clique width and rank width are equivalent graph complexity measures. We leverage this fact to show equiv-alence between clique width and monoidal width in the category of bialgebra graphs. As an intermediatestep towards the main result of this chapter, Theorem 6.19 in Section 6.2, we introduce inductive rank de-compositions in Section 6.1.

6.1 Inductive rank decompositions

As for branch decompositions, inductive rank decompositions are an intermediate step to add the inductiveflavour ofmonoidal decompositions to rank decompositions. Inductive rank decompositions are binary treesand give expressions that define graphs whose interfaces are some marked “dangling edges”.
Definition 6.1. A graph with dangling edges is a pair Γ = ([𝐺] , 𝐵) of an adjacency matrix 𝐺 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑘)that records the connectivity of the graph and a matrix 𝐵 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑛) that records the dangling edgesconnected to 𝑛 boundary ports. Two graphs with dangling edges Γ = ([𝐺] , 𝐵) and Γ′ = (

[

𝐺′] , 𝐵′) are equalif they encode the same graph with a different ordering on the vertices, i.e. there is a permutation matrix
𝑃 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑘) such that 𝐺 = 𝑃 ⋅ 𝐺′ ⋅ 𝑃⊤ and 𝐵 = 𝑃 ⋅ 𝐵′.

We will sometimes write 𝐺 ∈ 𝖺𝖽𝗃𝖺𝖼𝖾𝗇𝖼𝗒(Γ) and 𝐵 = 𝗌𝗈𝗎𝗋𝖼𝖾𝗌(Γ).
A graph with dangling edges Γ = ([𝐺] , 𝐵) can be seen as a morphism 𝑛→ 0 in 𝖡𝖦𝗋𝖺𝗉𝗁.

𝑘𝐺

𝐵𝑛

77
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Example 6.2. Two graphs with the same ports, as illustrated below, can be “glued” together:

glued with gives
These two graphs correspond to two morphisms 𝑔1, 𝑔2 ∶ 2 → 0 in 𝖡𝖦𝗋𝖺𝗉𝗁 that can be composed to obtainthe rightmost graph 2 # (𝑔1 ⊗ 𝑔2).

𝑔1 = 𝑔2 = ∪2 # (𝑔1 ⊗ 𝑔2) =

An inductive rank decomposition of Γ is a binary tree satisfying some conditions that ensure that com-posing the dangling edges of Γ1 with those of Γ2 gives Γ.
Definition 6.3. A binary tree 𝑇 ∈ Γ for a graph Γ is defined inductively.

𝑇 ∶∶= (Γ) if |𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(Γ)| ≤ 1
∣ (𝑇1—Γ—𝑇2) if 𝑇1 ∈ Γ1 , 𝑇2 ∈ Γ2 and Γ1,Γ2 are subgraphs of Γ

Definition 6.4. An inductive rank decomposition of a graph with dangling edges Γ = ([𝐺] , 𝐵) is a binary tree
𝑇 ∈ 𝑇Γ where either: Γ has at most one vertex and 𝑇 = (Γ); or 𝑇 = (𝑇1—Γ—𝑇2) and 𝑇𝑖 ∈ 𝑇Γ𝑖 are inductiverank decompositions of subgraphs Γ𝑖 = (

[

𝐺𝑖
]

, 𝐵𝑖) of Γ such that:
• The vertices are partitioned in two, [𝐺] = [(

𝐺1 𝐶
𝟘 𝐺2

)];
• The dangling edges are those to the original boundary and to the other subgraph, 𝐵1 = (𝐴1 ∣ 𝐶) and
𝐵2 = (𝐴2 ∣ 𝐶⊤), where 𝐵 =

(

𝐴1
𝐴2

).
We will sometimes write Γ𝑖 = 𝜆(𝑇𝑖), 𝐺𝑖 = 𝖺𝖽𝗃𝖺𝖼𝖾𝗇𝖼𝗒(Γ𝑖) and 𝐵𝑖 = 𝗌𝗈𝗎𝗋𝖼𝖾𝗌(Γ𝑖).Remark 6.5. Thanks to the equivalence relation on graphs with dangling edges, we can always assume thatthe rows of 𝐺 and 𝐵 are ordered like the leaves of 𝑇 so that we can split 𝐵 horizontally to get 𝐴1 and 𝐴2.At every step in a decomposition, two graphswith dangling edges are composed along a common bound-ary. The most complex of these boundaries determines the width of the decomposition.

Definition 6.6. Thewidth of an inductive rank decomposition 𝑇 of a graphwith dangling edgesΓ = ([𝐺] , 𝐵),with boundary matrix 𝐵, is defined inductively:
𝗐𝖽(𝑇 )∶= 𝗋𝗄(𝐵) if 𝑇 = (Γ) ,

| max{𝗐𝖽(𝑇1),𝗐𝖽(𝑇2), 𝗋𝗄(𝐵)} if 𝑇 = (𝑇1—Γ—𝑇2) .
Expanding this expression, we obtain

𝗐𝖽(𝑇 ) = max
𝑇 ′ full subtree of 𝑇 𝗋𝗄(𝗌𝗈𝗎𝗋𝖼𝖾𝗌(𝜆(𝑇

′))).
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Equivalence with rank width

Rank width coincides with inductive rank width as inductive rank decompositions can be transformed intorank decompositions while preserving their width (Lemma 6.8), and vice versa (Lemma 6.9). The width ofan inductive rank decomposition of a graph Γ is defined inductively. The next lemma, which is needed forproving Lemma 6.8, shows that it can be computed “globally” by relating the boundaries and adjacencymatrices of the subgraphs of Γ in the decomposition to the boundary and adjacency matrices of Γ.
Lemma6.7. Let𝑇 be an inductive rank decomposition of a graphwith dangling edgesΓ = ([𝐺] , 𝐵). Considera full subtree 𝑇 ′ of 𝑇 that identifies the subgraph Γ′∶= 𝜆(𝑇 ′) = (

[

𝐺′] , 𝐵′). Then, the adjacency matrix of Γ
can be written as [𝐺] =

[( 𝐺𝐿 𝐶𝐿 𝐶
𝟘 𝐺′ 𝐶𝑅
𝟘 𝟘 𝐺𝑅

)]

, its boundary as 𝐵 =
(

𝐴𝐿
𝐴′
𝐴𝑅

)

and we can compute the rank of the
boundary of Γ′: 𝗋𝗄(𝐵′) = 𝗋𝗄(𝐴′ ∣ 𝐶⊤𝐿 ∣ 𝐶𝑅).
Proof. Proceed by induction on the decomposition tree 𝑇 . If it is just a leaf, 𝑇 = (Γ), then Γ has at most onevertex, and Γ′ = ∅ or Γ′ = Γ. In both cases, the desired equality is true.If 𝑇 = (𝑇1—Γ—𝑇2), then, by Definition 6.4, we can write the adjacency and boundary matrices of Γ in
terms of those of Γ1∶= 𝜆(𝑇1) = (

[

𝐺1
]

, 𝐵1) and Γ2∶= 𝜆(𝑇2) = (
[

𝐺2
]

, 𝐵2): [𝐺] =
[(

𝐺1 𝐶
𝟘 𝐺2

)], 𝐵 =
(

𝐴1
𝐴2

),
𝐵1 = (𝐴1 ∣ 𝐶) and 𝐵2 = (𝐴2 ∣ 𝐶⊤). Suppose that 𝑇 ′ is a full subtree of 𝑇1. Then, we can write [

𝐺1
]

=
[( 𝐺𝐿 𝐶𝐿 𝐷′

𝟘 𝐺′ 𝐷𝑅
𝟘 𝟘 𝐻𝑅

)]

, 𝐴1 =
(

𝐴𝐿
𝐴′
𝐹𝑅

)

and 𝐶 =
(

𝐸𝐿
𝐸′
𝐸𝑅

)

. It follows that 𝐵1 =
(

𝐴𝐿 𝐸𝐿
𝐴′ 𝐸′
𝐹𝑅 𝐸𝑅

)

and 𝐶𝑅 = (𝐷𝑅 ∣ 𝐸′).
By induction hypothesis, 𝗋𝗄(𝐵′) = 𝗋𝗄(𝐴′ ∣ 𝐸′ ∣ 𝐶⊤𝐿 ∣ 𝐷𝑅). The rank is invariant to permuting the order of
columns, thus 𝗋𝗄(𝐵′) = 𝗋𝗄(𝐴′ ∣ 𝐶⊤𝐿 ∣ 𝐷𝑅 ∣ 𝐸′) = 𝗋𝗄(𝐴′ ∣ 𝐶⊤𝐿 ∣ 𝐶𝑅). We proceed analogously if 𝑇 ′ is a fullsubtree of 𝑇2.

An inductive rank decomposition defines a rank decomposition by forgetting the labelling of the internalnodes and by forgetting the root node.
Lemma 6.8. Let 𝑇 be an inductive rank decomposition of a graph with dangling edges Γ. Then, there is arank decomposition †(𝑇 ) of 𝐺 of bounded width: 𝗐𝖽(†(𝑇 )) ≤ 𝗐𝖽(𝑇 ).
Proof. A binary tree is, in particular, a subcubic tree. Then, we define the rank decomposition correspondingto an inductive rank decomposition 𝑇 by its underlying unlabelled tree 𝑌 from which we remove the leavesof 𝑇 with empty label. The corresponding bijection 𝑟∶ 𝗅𝖾𝖺𝗏𝖾𝗌(𝑌 ) → 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝐺) between the leaves of 𝑌and the vertices of 𝐺 is defined by the labels of the leaves in 𝑇 : if 𝑙 is a leaf in 𝑌 , then it is a leaf in 𝑇 with anon-empty label: the subgraph Γ𝑙 of Γ with one vertex 𝑣𝑙. These subgraphs need to give Γ when composedtogether, then, the function 𝑟 is a bijection with 𝑟(𝑙)∶= 𝑣𝑙. Thus, (𝑌 , 𝑟) is a branch decomposition of 𝐺 andwe can define †(𝑇 )∶= (𝑌 , 𝑟).By construction, the edges of 𝑌 are edges of 𝑇 so we can compute the order of the edges in 𝑌 from thelabellings of the nodes in 𝑇 . Consider an edge 𝑏 in 𝑌 and consider its endpoints in 𝑇 : let {𝑣, 𝑣𝑏} = 𝖾𝗇𝖽𝗌(𝑏)with 𝑣 parent of 𝑣𝑏 in 𝑇 . The order of 𝑏 is related to the rank of the boundary of the subtree 𝑇𝑏 of 𝑇 withroot in 𝑣𝑏. Let 𝜆(𝑇𝑏) = Γ𝑏 = (

[

𝐺𝑏
]

, 𝐵𝑏) be the subgraph of Γ identified by 𝑇𝑏. We can express the adjacencyand boundary matrices of Γ in terms of those of Γ𝑏:
[𝐺] =

[( 𝐺𝐿 𝐶𝐿 𝐶
𝟘 𝐺𝑏 𝐶𝑅
𝟘 𝟘 𝐺𝑅

)]

and 𝐵 =
(

𝐴𝐿
𝐴′
𝐴𝑅

)

.

By Lemma 6.7, the boundary rank of Γ𝑏 can be computed by 𝗋𝗄(𝐵𝑏) = 𝗋𝗄(𝐴′ ∣ 𝐶⊤𝐿 ∣ 𝐶𝑅). By Definition 2.42,
the order of the edge 𝑏 is 𝗈𝗋𝖽(𝑏)∶= 𝗋𝗄(𝐶⊤𝐿 ∣ 𝐶𝑅), and we can bound it with the boundary rank of Γ𝑏: 𝗋𝗄(𝐵𝑏) ≥
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𝗈𝗋𝖽(𝑏). These observations allow us to bound the width of the rank decomposition 𝑌 .

𝗐𝖽(𝑌 , 𝑟)
∶= max

𝑏∈𝖾𝖽𝗀𝖾𝗌(𝑌 )
𝗈𝗋𝖽(𝑏)

≤ max
𝑏∈𝖾𝖽𝗀𝖾𝗌(𝑌 )

𝗋𝗄(𝐵𝑏)

≤ max
𝑇 ′≤𝑇

𝗋𝗄(𝗌𝗈𝗎𝗋𝖼𝖾𝗌(𝜆(𝑇 ′)))

∶=𝗐𝖽(𝑇 )

An inductive rank decomposition is almost the same as a rank decomposition but with a selected node,the root, that points to the first step in the decomposition. We assign a root to a rank decomposition by pick-ing an edge in the decomposition tree and subdividing it. The extra vertex added in this operation becomesthe root and determines the labelling of the internal nodes by proceeding bottom up from the leaves.
Lemma 6.9. Let Γ = ([𝐺] , 𝐵) be a graphwith dangling edges and (𝑌 , 𝑟) be a rank decomposition of𝐺. Then,there is an inductive rank decomposition (𝑌 , 𝑟) of Γ of bounded width: 𝗐𝖽((𝑌 , 𝑟)) ≤ 𝗐𝖽(𝑌 , 𝑟) + 𝗋𝗄(𝐵).
Proof. Proceed by induction on the number of edges of the decomposition tree 𝑌 to construct an inductivedecomposition tree 𝑇 in which every non-trivial full subtree 𝑇 ′ has a corresponding edge 𝑏′ in the tree 𝑌 .Suppose 𝑌 has no edges, then either 𝐺 = ∅ or 𝐺 has one vertex. In either case, we define an inductiverank decomposition with just a leaf labelled with Γ, (𝑌 , 𝑟)∶= (Γ). We compute its width by definition:
𝗐𝖽((𝑌 , 𝑟))∶= 𝗋𝗄(𝐵) ≤ 𝗐𝖽(𝑌 , 𝑟) + 𝗋𝗄(𝐵).

If the decomposition tree has at least an edge, then it is composed of two subcubic subtrees, 𝑌 = 𝑌1
𝑏—𝑌2.Let 𝑉𝑖∶= 𝑟(𝗅𝖾𝖺𝗏𝖾𝗌(𝑌𝑖)) be the set of vertices associated to 𝑌𝑖 and𝐺𝑖∶= 𝐺[𝑉𝑖] be the subgraph of𝐺 induced bythe set of vertices 𝑉𝑖. By induction hypothesis, there are inductive rank decompositions 𝑇𝑖 of Γ𝑖 = (

[

𝐺𝑖
]

, 𝐵𝑖)in which every full subtree 𝑇 ′ has an associated edge 𝑏′. Associate the edge 𝑏 to both 𝑇1 and 𝑇2 so thatevery subtree of 𝑇 has an associated edge in 𝑌 . We can use these decompositions to define an inductiverank decomposition 𝑇 = (𝑇1—Γ—𝑇2) of Γ. Let 𝑇 ′ be a full subtree of 𝑇 corresponding to Γ′ = (
[

𝐺′] , 𝐵′).
By Lemma 6.7, we can compute the rank of its boundary matrix 𝗋𝗄(𝐵′) = 𝗋𝗄(𝐴′ ∣ 𝐶⊤𝐿 ∣ 𝐶𝑅), where 𝐴′,
𝐶𝐿 and 𝐶𝑅 are as in the statement of Lemma 6.7. The matrix 𝐴′ contains some of the rows of 𝐵, then itsrank is bounded by the rank of 𝐵 and we obtain 𝗋𝗄(𝐵′) ≤ 𝗋𝗄(𝐵) + 𝗋𝗄(𝐶⊤𝐿 ∣ 𝐶𝑅). The matrix (𝐶⊤𝐿 ∣ 𝐶𝑅)records the edges between the vertices in 𝐺′ and the vertices in the rest of 𝐺, which, by Definition 2.42,are the edges that determine 𝗈𝗋𝖽(𝑏′). This means that the rank of this matrix is the order of the edge 𝑏′:
𝗋𝗄(𝐶⊤𝐿 ∣ 𝐶𝑅) = 𝗈𝗋𝖽(𝑏′). With these observations, we can compute the width of 𝑇 .

𝗐𝖽(𝑇 )
= max
𝑇 ′≤𝑇

𝗋𝗄(𝐵′)

= max
𝑇 ′≤𝑇

𝗋𝗄(𝐴′ ∣ 𝐶⊤𝐿 ∣ 𝐶𝑅)

≤ max
𝑇 ′≤𝑇

𝗋𝗄(𝐶⊤𝐿 ∣ 𝐶𝑅) + 𝗋𝗄(𝐵)

= max
𝑏∈𝖾𝖽𝗀𝖾𝗌(𝑌 )

𝗈𝗋𝖽(𝑏) + 𝗋𝗄(𝐵)

∶=𝗐𝖽(𝑌 , 𝑟) + 𝗋𝗄(𝐵)
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By combining Lemmas 6.8 and 6.9 we obtain that rank decompositions and inductive ones give the samecomplexity measure.

Proposition 6.10. For graphs with no dangling edges, rank width and inductive rank width coincide.
6.2 Bounding rank width
Monoidal width in the prop 𝖡𝖦𝗋𝖺𝗉𝗁 of graphs is equivalent to rank width: it is at most twice and at least ahalf of rank width. Transforming an inductive rank decomposition into a monoidal decomposition gives theupper bound, while a mapping in the other direction yields the lower bound. As for cospans of graphs, thenumber of vertices in a graph gives its cost, so an appropriate weight function counts the number of verticesin each morphism.
Definition 6.11. For a morphism 𝑔∶ 𝑛 → 𝑚 in𝖬𝖦𝗋𝖺𝗉𝗁, the weight function 𝗐 is defined as 𝗐(𝑔)∶= 𝗋𝗄(𝐺) +
𝗋𝗄(𝐿) + 𝗋𝗄(𝑅) + 𝗋𝗄(𝑃 ) + 𝗋𝗄(𝐹 ), where 𝑔 = ([𝐺] , 𝐿, 𝑅, 𝑃 , [𝐹 ]).

With this definition, the identity on 𝑛 weights 𝑛 because 𝗋𝗄(𝟙𝑛) = 𝑛, and composing along 𝑛 wires costs
𝑛. This defines a weight function.
Lemma 6.12. The function 𝗐 in Definition 6.11 satisfies the conditions for a weight function in Definition 3.3in the monoidal category𝖬𝖦𝗋𝖺𝗉𝗁.
Proof. For morphisms 𝑔∶ 𝑛→ 𝑚, ℎ∶ 𝑚→ 𝑙 and 𝑔′ ∶ 𝑛′ → 𝑚′, in𝖬𝖦𝗋𝖺𝗉𝗁, given by 𝑔 = ([𝐺] , 𝐿, 𝑅, 𝑃 , [𝐹 ]),
ℎ = ([𝐻] ,𝑀, 𝑆,𝑄, [𝐸]) and 𝑔′ = ([

𝐺′] , 𝐿′, 𝑅′, 𝑃 ′,
[

𝐹 ′]), we recall the expressions for the composition
𝑔 # ℎ and the monoidal product 𝑔 ⊗ 𝑔′.

𝑔 # ℎ∶=
([(

𝐺 𝑅𝑀⊤

𝟘 𝐻+𝑀𝐹𝑀⊤

)]

,
( 𝐿
𝑀𝑃

)

,
(

𝑅𝑄⊤
𝑆+𝑀(𝐹+𝐹⊤)𝑄⊤

)

, 𝑄𝑃 ,
[

𝐸 +𝑄𝐹𝑄⊤
]

)

𝑔 ⊗ 𝑔′∶=
([

𝐺 ⊕𝐺′] , 𝐿 ⊕ 𝐿′, 𝑅 ⊕ 𝑅′, 𝑃 ⊕ 𝑃 ′,
[

𝐹 ⊕ 𝐹 ′])

We bound the ranks of these matrices individually.
𝗋𝗄
(

𝐺 𝑅𝑀⊤

𝟘 𝐻+𝑀𝐹𝑀⊤

)

≤ 𝗋𝗄(𝐺) + 𝗋𝗄(𝐻) + 𝑚 𝗋𝗄(𝐺 ⊕𝐺′) ≤ 𝗋𝗄(𝐺) + 𝗋𝗄(𝐺′)

𝗋𝗄
( 𝐿
𝑀𝑃

)

≤ 𝗋𝗄(𝐿) + 𝗋𝗄(𝑀) 𝗋𝗄(𝐿⊕𝐿′) ≤ 𝗋𝗄(𝐿) + 𝗋𝗄(𝐿′)

𝗋𝗄
(

𝑅𝑄⊤
𝑆+𝑀(𝐹+𝐹⊤)𝑄⊤

)

≤ 𝗋𝗄(𝑅) + 𝗋𝗄(𝑆) + 𝗋𝗄(𝑄) 𝗋𝗄(𝑅⊕𝑅′) ≤ 𝗋𝗄(𝑅) + 𝗋𝗄(𝑅′)

𝗋𝗄(𝑄𝑃 ) ≤ 𝗋𝗄(𝑃 ) 𝗋𝗄(𝑃 ⊕ 𝑃 ′) ≤ 𝗋𝗄(𝑃 ) + 𝗋𝗄(𝑃 ′)

𝗋𝗄(𝐸 +𝑄𝐹𝑄⊤) ≤ 𝗋𝗄(𝐹 ) + 𝗋𝗄(𝐸) 𝗋𝗄(𝐹 ⊕ 𝐹 ′) ≤ 𝗋𝗄(𝐹 ) + 𝗋𝗄(𝐹 ′)

With these inequalities, we bound the weights of compositions and monoidal products.

𝗐(𝑔 #𝑚 ℎ) ≤ 𝗐(𝑔) + 𝗐(ℎ) + 𝑚 𝗐(𝑔 ⊗ 𝑔′) ≤ 𝗐(𝑔) + 𝗐(𝑔′)

Given the inductive nature of both kinds of decompositions, themonoidal decomposition correspondingto an inductive rank decomposition is constructed by induction. The inductive step relies on the factorisationof morphisms 𝑛→ 0 as shown in Figure 6.1.In order to show that such factorisation is always possible, Lemma 6.14 shows that any boundary matrixcan be split along the ranks 𝑟1 and 𝑟2.
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𝑔𝑛 =

𝑘1

𝑘2

𝐺1

𝐺2

𝐴1

𝐴2

𝐶
𝑛 =

𝑘1

𝑘2

𝐿1

𝐿2

𝐺1

𝐺2

𝑁1

𝑁2

𝑆
𝑛

𝑟1

𝑟2

Figure 6.1: Splitting a graph with dangling edges optimally into subgraphs.

Remark 6.13. By Lemma 3.16, the rank of a composition of twomatrices is bounded by their ranks: 𝗋𝗄(𝐴⋅𝐵) ≤
min{𝗋𝗄(𝐴), 𝗋𝗄(𝐵)}. If, moreover, 𝐵 has full rank, then 𝗋𝗄(𝐴 ⋅ 𝐵) = 𝗋𝗄(𝐴).
Lemma 6.14. Let 𝐴𝑖 ∈ 𝖬𝖺𝗍ℕ(𝑘𝑖, 𝑛), for 𝑖 = 1, 2, and 𝐶 ∈ 𝖬𝖺𝗍ℕ(𝑘1, 𝑘2). Then, there are rank decompositionsof (𝐴1 ∣ 𝐶) and (𝐴2 ∣ 𝐶⊤) of the form• (𝐴1 ∣ 𝐶) = 𝐿1 ⋅ (𝑁1 ∣ 𝑆 ⋅ 𝐿⊤2 ), and• (𝐴2 ∣ 𝐶⊤) = 𝐿2 ⋅ (𝑁2 ∣ 𝑆⊤ ⋅ 𝐿⊤1 ).This ensures that we can decompose the diagram below on the left-hand-side as the one on the right-hand-side, where 𝑟1 = 𝗋𝗄(𝐴1 ∣ 𝐶) and 𝑟2 = 𝗋𝗄(𝐴2 ∣ 𝐶⊤).

𝐴1

𝐴2

𝐶

𝑛

𝑛

𝑘1

𝑘2

=

𝑁1

𝑁2

𝑆
𝐿1

𝐿2

𝑛

𝑛

𝑘1

𝑘2

𝑟1

𝑟2

Proof. Let 𝑟1 = 𝗋𝗄(𝐴1 ∣ 𝐶) and 𝑟2 = 𝗋𝗄(𝐴2 ∣ 𝐶⊤). We start by factoring (𝐴1 ∣ 𝐶) into 𝐿1 ⋅ (𝑁1 ∣ 𝐾1),
𝐴1

𝐶

𝑛
𝑘1

𝑘2
=

𝑁1

𝐾1

𝐿1

𝑛
𝑘1

𝑘2

𝑟1

where 𝐿1 ∈ 𝖬𝖺𝗍ℕ(𝑘1, 𝑟1), 𝑁1 ∈ 𝖬𝖺𝗍ℕ(𝑟1, 𝑛) and 𝐾1 ∈ 𝖬𝖺𝗍ℕ(𝑟1, 𝑘2). Then, we proceed with factoring
(𝐴2 ∣ 𝐾⊤

1 ) and we show that 𝗋𝗄(𝐴2 ∣ 𝐾⊤
1 ) = 𝗋𝗄(𝐴2 ∣ 𝐶⊤). Let 𝐿2 ⋅ (𝑁2 ∣ 𝐾2) be a rank factorisation of

(𝐴2 ∣ 𝐾⊤
1 ),

𝐾⊤
1

𝐴2

𝑟1
𝑘2

𝑛
=

𝐾2

𝑁2

𝐿2

𝑟1
𝑘2

𝑛

𝑟′

with 𝐿2 ∈ 𝖬𝖺𝗍ℕ(𝑘2, 𝑟′), 𝑁2 ∈ 𝖬𝖺𝗍ℕ(𝑟′, 𝑛) and 𝐾2 ∈ 𝖬𝖺𝗍ℕ(𝑟′, 𝑘1). We show that 𝑟′ = 𝑟2. By the firstfactorisation, we obtain that 𝐶 = 𝐿1 ⋅𝐾1, and
(𝐴2 ∣ 𝐶⊤) = (𝐴2 ∣ 𝐾⊤

1 ⋅ 𝐿⊤1 ) = (𝐴2 ∣ 𝐾⊤
1 ) ⋅

( 𝟙 𝟘
𝟘 𝐿⊤1

)

.
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Then, 𝑟′ = 𝑟2 because𝐿1 and, consequently,
( 𝟙 𝟘

𝟘 𝐿⊤1

) have full rank and we can apply Remark 6.13. By letting
𝑆 = 𝐾⊤

2 , we obtain the desired factorisation.
Once the graph in Figure 6.1 has been split, the boundaries of its induced subgraphs have changed. Thismeans that we cannot apply the inductive hypothesis right away, but we need to first transform the inductiverank decompositions of the old subgraphs into decompositions of the new ones, as shown in Lemma 6.15.More explicitly, when𝑀 has full rank, if there is an inductive rank decomposition ofΓ = ([𝐺] , 𝐵′ ⋅𝑀), whichcorresponds to 𝑔 below left, we can obtain one of Γ′ = ([𝐺] , 𝐵′), which corresponds to 𝑔′ below right, ofthe same width.

𝑔 =
𝐺

𝐵𝑀

⇝ 𝑔′ =
𝐺

𝐵𝑀 ′

Lemma 6.15. Let 𝑇 be an inductive rank decomposition of Γ = ([𝐺] , 𝐵 ⋅𝑀), with𝑀 that has full rank. Then,there is an inductive rank decomposition 𝑇 ′ of Γ′ = ([𝐺] , 𝐵 ⋅𝑀 ′) such that 𝗐𝖽(𝑇 ) ≤ 𝗐𝖽(𝑇 ′) and such that
𝑇 and 𝑇 ′ have the same underlying tree structure. If, moreover,𝑀 ′ has full rank, then 𝗐𝖽(𝑇 ) = 𝗐𝖽(𝑇 ′).
Proof. Proceed by induction on the decomposition tree 𝑇 . If the tree 𝑇 is just a leaf with label Γ, then wedefine the corresponding tree to be just a leaf with label Γ′: 𝑇 ′∶= (Γ′). Clearly, 𝑇 and 𝑇 ′ have the sameunderlying tree structure. By Remark 6.13 and the fact that 𝑀 has full rank, we can relate their widths:
𝗐𝖽(𝑇 ′)∶= 𝗋𝗄(𝐵 ⋅𝑀 ′) ≤ 𝗋𝗄(𝐵) = 𝗋𝗄(𝐵 ⋅𝑀) ∶=𝗐𝖽(𝑇 ). If, moreover,𝑀 ′ has full rank, the inequality becomesan equality and 𝗐𝖽(𝑇 ′) = 𝗐𝖽(𝑇 ).If 𝑇 = (𝑇1—Γ—𝑇2), then the adjacency and boundary matrices of Γ can be expressed in terms of those
of its subgraphs Γ𝑖∶= 𝜆𝑖(𝑇𝑖) = (

[

𝐺𝑖
]

, 𝐷𝑖), by definition of inductive rank decomposition: 𝐺 =
(

𝐺1 𝐶
𝟘 𝐺2

),
𝐵 ⋅𝑀 =

(

𝐴1
𝐴2

)

⋅𝑀 =
(

𝐴1⋅𝑀
𝐴2⋅𝑀

), with𝐷1 = (𝐴1 ⋅𝑀 ∣ 𝐶) and𝐷2 = (𝐴2 ⋅𝑀 ∣ 𝐶⊤). The boundary matrices𝐷𝑖of the subgraphsΓ𝑖 can also be expressed as a compositionwith a full-rankmatrix:𝐷1 = (𝐴1 ⋅𝑀 ∣ 𝐶) = (𝐴1 ∣
𝐶) ⋅

(

𝑀 𝟘
𝟘 𝟙𝑘2

) and𝐷2 = (𝐴2 ⋅𝑀 ∣ 𝐶⊤) = (𝐴2 ∣ 𝐶⊤) ⋅
(

𝑀 𝟘
𝟘 𝟙𝑘1

). Thematrices (𝑀 𝟘
𝟘 𝟙𝑘𝑖

) have full rank because
all their blocks do. Let 𝐵1 = (𝐴1 ∣ 𝐶) and 𝐵2 = (𝐴2 ∣ 𝐶⊤). By induction hypothesis, there are inductive rankdecompositions 𝑇 ′

1 and 𝑇 ′
2 of Γ′1 = (

[

𝐺1
]

, 𝐵1 ⋅
(

𝑀 ′ 𝟘
𝟘 𝟙𝑘2

)

) and Γ′2 = (
[

𝐺2
]

, 𝐵2 ⋅
(

𝑀 ′ 𝟘
𝟘 𝟙𝑘1

)

) with the same
underlying tree structure as 𝑇1 and 𝑇2, respectively. Moreover, their width is bounded, 𝗐𝖽(𝑇 ′

𝑖 ) ≤ 𝗐𝖽(𝑇𝑖),and if, additionally,𝑀 ′ has full rank, 𝗐𝖽(𝑇 ′
𝑖 ) = 𝗐𝖽(𝑇𝑖). Then, we can use these decompositions to definean inductive rank decomposition 𝑇 ′∶= (𝑇 ′

1—Γ′—𝑇 ′
2) of Γ′ because its adjacency and boundary matrices can

be expressed in terms of those of Γ′𝑖 as in the definition of inductive rank decomposition: 𝐺 =
(

𝐺1 𝐶
𝟘 𝐺2

),
𝐵1 ⋅

(

𝑀 ′ 𝟘
𝟘 𝟙𝑘2

)

= (𝐴1 ⋅𝑀 ′ ∣ 𝐶) and 𝐵2 ⋅
(

𝑀 ′ 𝟘
𝟘 𝟙𝑘1

)

= (𝐴2 ⋅𝑀 ′ ∣ 𝐶⊤). Applying the induction hypothesis and
Remark 6.13, we compute the width of this decomposition.

𝗐𝖽(𝑇 ′)
∶= max{𝗋𝗄(𝐵 ⋅𝑀 ′),𝗐𝖽(𝑇 ′

1),𝗐𝖽(𝑇
′
2)}

≤ max{𝗋𝗄(𝐵),𝗐𝖽(𝑇1),𝗐𝖽(𝑇2)}
= max{𝗋𝗄(𝐵 ⋅𝑀),𝗐𝖽(𝑇1),𝗐𝖽(𝑇2)}

∶=𝗐𝖽(𝑇 )

If, moreover,𝑀 ′ has full rank, the inequality becomes an equality and 𝗐𝖽(𝑇 ′) = 𝗐𝖽(𝑇 ).
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With the above results, we construct a monoidal decomposition from an inductive rank decompositionand show the upper bound on monoidal width.

Proposition 6.16. LetΓ = ([𝐺] , 𝐵) be a graphwith dangling edges and 𝑔∶ 𝑛→ 0 be themorphism in𝖡𝖦𝗋𝖺𝗉𝗁corresponding to Γ. Let 𝑇 be a inductive rank decomposition of Γ. Then, there is a monoidal decomposition
†(𝑇 ) of 𝑔 of bounded width 𝗐𝖽(†(𝑇 )) ≤ 2 ⋅ 𝗐𝖽(𝑇 ).
Proof. Proceed by induction on the decomposition tree 𝑇 . If the decomposition tree consists of just oneleaf with label Γ, then Γmust have at most one vertex, we can define†(𝑇 )∶= (𝑔) to also be just a leaf, andbound its width 𝗐𝖽(𝑇 )∶= 𝗋𝗄(𝐺) = 𝗐𝖽(†(𝑇 )).If𝑇 = (𝑇1—Γ—𝑇2), thenwe can relate the adjacency andboundarymatrices ofΓ to those ofΓ𝑖∶= 𝜆(𝑇𝑖) =
(
[

𝐺𝑖
]

, 𝐵𝑖), by definition of inductive rank decomposition: 𝐺 =
(

𝐺1 𝐶
𝟘 𝐺2

), 𝐵 =
(

𝐴1
𝐴2

), 𝐵1 = (𝐴1 ∣ 𝐶) and
𝐵2 = (𝐴2 ∣ 𝐶⊤). By Lemma 6.14, there are rank decompositions of (𝐴1 ∣ 𝐶) and (𝐴2 ∣ 𝐶⊤) of the form:
(𝐴1 ∣ 𝐶) = 𝐿1 ⋅ (𝑁1 ∣ 𝑆 ⋅ 𝐿⊤2 ); and (𝐴2 ∣ 𝐶⊤) = 𝐿2 ⋅ (𝑁2 ∣ 𝑆⊤ ⋅ 𝐿⊤1 ). This means that we can write 𝑔 asin Figure 6.1, with 𝑟𝑖 = 𝗋𝗄(𝐵𝑖). Then, 𝐵𝑖 = 𝐿𝑖 ⋅𝑀𝑖 with𝑀𝑖 that has full rank 𝑟𝑖. By Lemma 6.15, there is aninductive rank decomposition 𝑇 ′

𝑖 of Γ′𝑖 = (
[

𝐺𝑖
]

, 𝐿𝑖), with the same underlying binary tree as 𝑇𝑖, such that
𝗐𝖽(𝑇𝑖) = 𝗐𝖽(𝑇 ′

𝑖 ). Let 𝑔𝑖 ∶ 𝑟𝑖 → 0 be the morphisms in 𝖡𝖦𝗋𝖺𝗉𝗁 corresponding to Γ′𝑖 and let 𝑏∶ 𝑛 → 𝑟1 + 𝑟2be defined as

𝑏𝑛 𝑟1 + 𝑟2 =

𝑁1

𝑁2

𝑆
𝑛

𝑟1

𝑟2

.

By induction hypothesis, there aremonoidal decompositions†(𝑇 ′
𝑖 ) of themorphisms 𝑔𝑖 of boundedwidth:

𝗐𝖽(†(𝑇 ′
𝑖 )) ≤ 2 ⋅𝗐𝖽(𝑇 ′

𝑖 ) = 2 ⋅𝗐𝖽(𝑇𝑖). Then, 𝑔 = 𝑏 #𝑟1+𝑟2 (𝑔1 ⊗ 𝑔2) and†(𝑇 )∶= (𝑏— #𝑟1+𝑟2 —(†(𝑇 ′
1)—⊗

—†(𝑇 ′
2))) is a monoidal decomposition of 𝑔. Its width can be computed.

𝗐𝖽(†(𝑇 ))

∶= max{𝗐(𝑏),𝗐(𝑟1 + 𝑟2),𝗐𝖽(†(𝑇 ′
1)),𝗐𝖽(

†(𝑇 ′
2))}

≤ max{𝗐(𝑏),𝗐(𝑟1 + 𝑟2), 2 ⋅ 𝗐𝖽(𝑇 ′
1), 2 ⋅ 𝗐𝖽(𝑇

′
2)}

= max{𝗐(𝑏), 𝑟1 + 𝑟2, 2 ⋅ 𝗐𝖽(𝑇1), 2 ⋅ 𝗐𝖽(𝑇2)}
≤ 2 ⋅max{𝑟1, 𝑟2,𝗐𝖽(𝑇1),𝗐𝖽(𝑇2)}

∶=2 ⋅ 𝗐𝖽(𝑇 )

Each node in a monoidal decomposition of a graph 𝑔 determines a cut in 𝑔. This correspondence mapsmonoidal decompositions to inductive rank decompositions. However, bounding their widths requires somecare because the splitting determined by a monoidal decomposition may be not the canonical one neededto define an inductive rank decomposition of the same graph. Lemma 6.7 shows that this does notmatter as,from the induced inductive rank decompositions, we can construct ones of the correct subgraphs by addingsome connections between the vertices as long as the complexity of these connections is bounded by theboundary.Given an inductive rank decomposition of Γ = ([𝐺] , (𝐿 ∣ 𝑅)), associated to 𝑔 below left, we constructone of Γ′∶= (
[

𝐺 + 𝐿 ⋅ 𝐹 ⋅ 𝐿⊤
]

, (𝐿 ∣ 𝑅 + 𝐿 ⋅ (𝐹 + 𝐹⊤) ⋅ 𝑃⊤)), which corresponds to 𝑓 # 𝑔 below right, of at
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most the same width.

𝑔 =

𝑘𝐺

𝐿

𝑅

𝑃

𝑗

𝑚

𝑓 # 𝑔 =

𝑘𝐺

𝐿

𝑅

𝑃

𝐹
𝑗

𝑚

Lemma 6.17. Let 𝑇 be an inductive rank decomposition of Γ = ([𝐺] , (𝐿 ∣ 𝑅)), with 𝐺 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑘),
𝐿 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑗) and 𝑅 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑚). Let 𝐹 ∈ 𝖬𝖺𝗍ℕ(𝑗, 𝑗), 𝑃 ∈ 𝖬𝖺𝗍ℕ(𝑚, 𝑗) and define the graph Γ′ byprecomposing with the adjacency matrix [𝐹 ], Γ′∶= (

[

𝐺 + 𝐿 ⋅ 𝐹 ⋅ 𝐿⊤
]

, (𝐿 ∣ 𝑅 + 𝐿 ⋅ (𝐹 + 𝐹⊤) ⋅ 𝑃⊤)). Then,there is an inductive rank decomposition 𝑇 ′ of Γ′ such that 𝗐𝖽(𝑇 ′) ≤ 𝗐𝖽(𝑇 ).
Proof. Note that we can factor the boundary matrix of Γ′ as (𝐿 ∣ 𝑅 + 𝐿 ⋅ (𝐹 + 𝐹⊤) ⋅ 𝑃⊤) = (𝐿 ∣ 𝑅) ⋅
(

𝟙𝑗 (𝐹+𝐹⊤)⋅𝑃⊤

𝟘 𝟙𝑚

). Then, we can bound its rank, 𝗋𝗄(𝐿 ∣ 𝑅 + 𝐿 ⋅ (𝐹 + 𝐹⊤) ⋅ 𝑃⊤) ≤ 𝗋𝗄(𝐿 ∣ 𝑅).
Proceed by induction on the decomposition tree 𝑇 .If it is just a leaf with label Γ, then Γ has one vertex and we can define a decomposition for Γ′ to be alsojust a leaf: 𝑇 ′∶= (Γ′). We can bound its width with the width of 𝑇 : 𝗐𝖽(𝑇 ′)∶= 𝗋𝗄(𝐿 ∣ 𝑅+𝐿 ⋅ (𝐹 +𝐹⊤) ⋅𝑃⊤) ≤

𝗋𝗄(𝐿 ∣ 𝑅) ∶=𝗐𝖽(𝑇 ).If 𝑇 = (𝑇1—Γ—𝑇2), then there are two subgraphsΓ1 = (
[

𝐺1
]

, (𝐿1 ∣ 𝑅1 ∣ 𝐶)) andΓ2 = (
[

𝐺2
]

, (𝐿2 ∣ 𝑅2 ∣
𝐶)) such that 𝑇𝑖 is an inductive rank decomposition of Γ𝑖, and we can relate the adjacency and boundary
matrices of Γ to those of Γ1 and Γ2, by definition of inductive rank decomposition: [𝐺] = [(

𝐺1 𝐶
𝟘 𝐺2

)] and
(𝐿 ∣ 𝑅) =

(

𝐿1 𝑅1
𝐿2 𝑅2

). Similarly, we express the adjacency and boundary matrices of Γ′ in terms of the same
components: [𝐺 + 𝐿 ⋅ 𝐹 ⋅ 𝐿⊤

]

=
[(

𝐺1+𝐿1⋅𝐹 ⋅𝐿⊤1 𝐶+𝐿1⋅(𝐹+𝐹⊤)⋅𝐿⊤2
𝟘 𝐺2+𝐿2⋅𝐹 ⋅𝐿⊤2

)]

and (𝐿 ∣ 𝑅 + 𝐿 ⋅ (𝐹 + 𝐹⊤) ⋅ 𝑃⊤) =
(

𝐿1 𝑅1+𝐿1⋅(𝐹+𝐹⊤)⋅𝑃⊤

𝐿2 𝑅2+𝐿2⋅(𝐹+𝐹⊤)⋅𝑃⊤

). We use these decompositions to define two subgraphs of Γ′ and apply the induction
hypothesis to them.

Γ′1∶= (
[

𝐺1 + 𝐿1 ⋅ 𝐹 ⋅ 𝐿⊤1
]

, (𝐿1 ∣ 𝑅1 + 𝐿1 ⋅ (𝐹 + 𝐹⊤) ⋅ 𝑃⊤ ∣ 𝐶 + 𝐿1 ⋅ (𝐹 + 𝐹⊤) ⋅ 𝐿⊤2 ))

=(
[

𝐺1 + 𝐿1 ⋅ 𝐹 ⋅ 𝐿⊤1
]

, (𝐿1 ∣ (𝑅1 ∣ 𝐶) + 𝐿1 ⋅ (𝐹 + 𝐹⊤) ⋅ (𝑃⊤ ∣ 𝐿⊤2 )))and
Γ′2∶= (

[

𝐺2 + 𝐿2 ⋅ 𝐹 ⋅ 𝐿⊤2
]

, (𝐿2 ∣ 𝑅2 + 𝐿2 ⋅ (𝐹 + 𝐹⊤) ⋅ 𝑃⊤ ∣ 𝐶⊤ + 𝐿2 ⋅ (𝐹 + 𝐹⊤) ⋅ 𝐿⊤1 ))

=(
[

𝐺2 + 𝐿2 ⋅ 𝐹 ⋅ 𝐿⊤2
]

, (𝐿2 ∣ (𝑅2 ∣ 𝐶⊤) + 𝐿2 ⋅ (𝐹 + 𝐹⊤) ⋅ (𝑃⊤ ∣ 𝐿⊤1 )))

By induction, we have inductive rank decompositions 𝑇 ′
𝑖 of Γ′𝑖 such that 𝗐𝖽(𝑇 ′

𝑖 ) ≤ 𝗐𝖽(𝑇𝑖). We defined Γ′𝑖 sothat 𝑇 ′∶= (𝑇 ′
1—Γ′—𝑇 ′

2)would be an inductive rank decomposition of Γ′. We can bound its width as desired.
𝗐𝖽(𝑇 ′)

∶= max{𝗐𝖽(𝑇 ′
1),𝗐𝖽(𝑇

′
2), 𝗋𝗄(𝐿 ∣ 𝑅 + 𝐿 ⋅ (𝐹 + 𝐹⊤) ⋅ 𝑃⊤)}

≤ max{𝗐𝖽(𝑇1),𝗐𝖽(𝑇2), 𝗋𝗄(𝐿 ∣ 𝑅 + 𝐿 ⋅ (𝐹 + 𝐹⊤) ⋅ 𝑃⊤)}
≤ max{𝗐𝖽(𝑇1),𝗐𝖽(𝑇2), 𝗋𝗄(𝐿 ∣ 𝑅)}

∶=𝗐𝖽(𝑇 )
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A monoidal decomposition defines by induction an inductive rank decomposition. The inductive steprelies on Lemma 6.15 and Lemma 6.7 to obtain, from an inductive rank decomposition of a graph 𝑔, one ofa graph constructed from 𝑔 by adding additional connections to the boundary or between the vertices in acontrolled manner.
Proposition 6.18. Let 𝑑 ∈ 𝐷𝑔 be amonoidal decomposition of amorphism 𝑔∶ 𝑛→ 𝑚 in𝖡𝖦𝗋𝖺𝗉𝗁 given by 𝑔 =
([𝐺] , 𝐿, 𝑅, 𝑃 , [𝐹 ]), and let Γ = ([𝐺] , (𝐿 ∣ 𝑅)) be its corresponding graph with dangling edges. Then, thereexist an inductive rank decomposition(𝑑) ofΓ of boundedwidth: 𝗐𝖽((𝑑)) ≤ 2⋅max{𝗐𝖽(𝑑), 𝗋𝗄(𝐿), 𝗋𝗄(𝑅)}.
Proof. Proceed by induction on the decomposition tree 𝑑. If it is just a leaf with label 𝑔, then its width isdefined to be the number 𝑘 of vertices of 𝑔, 𝗐𝖽(𝑑)∶= 𝑘. Pick any inductive rank decomposition of Γ anddefine(𝑑)∶= 𝑇 . Surely, 𝗐𝖽(𝑇 ) ≤ 𝑘 ∶=𝗐𝖽(𝑑)If 𝑑 = (𝑑1— #𝑗 —𝑑2) starts with a composition node, then 𝑔 is the composition of two morphisms:
𝑔 = 𝑔1 #𝑔2, with 𝑔𝑖 = ([

𝐺𝑖
]

, 𝐿𝑖, 𝑅𝑖, 𝑃𝑖,
[

𝐹𝑖
]). Given the partition of the vertices determined by 𝑔1 and 𝑔2, we

can decompose 𝑔 in another way, by writing [𝐺] = [(

𝐺1 𝐶
𝟘 𝐺2

)] and 𝐵 = (𝐿 ∣ 𝑅) =
(

𝐿1 𝑅1
𝐿2 𝑅2

). Then, we have
that𝐺1 = 𝐺1,𝐿1 = 𝐿1, 𝑃 = 𝑃2 ⋅𝑃1,𝐶 = 𝑅1 ⋅𝐿⊤2 ,𝑅1 = 𝑅1 ⋅𝑃⊤2 ,𝐿2 = 𝐿2 ⋅𝑃1,𝑅2 = 𝑅2+𝐿2 ⋅(𝐹1+𝐹⊤1 ) ⋅𝑃

⊤
2 ,

𝐺2 = 𝐺2+𝐿2 ⋅𝐹1 ⋅𝐿⊤2 , and 𝐹 = 𝐹2+𝑃2 ⋅𝐹1 ⋅𝑃⊤2 . This corresponds to the following diagrammatic rewritingusing the equations of 𝖡𝖦𝗋𝖺𝗉𝗁.

𝑘1𝐺1

𝐿1

𝑅1

𝑃1

𝐹1𝑛
𝑗

𝑘2𝐺2

𝐿2

𝑅2

𝑃2

𝐹2 𝑚

=

𝑘1𝐺1

𝐿1

𝑛

𝑘2𝐺2

𝑅2

𝐹 𝑚

𝑃

𝐶⊤

𝑅
⊤
1 𝐿2

We define 𝐵1∶= (𝐿1 ∣ 𝑅1 ∣ 𝐶) and 𝐵2∶= (𝐿2 ∣ 𝑅2 ∣ 𝐶⊤). In order to build an inductive rank decomposition
of Γ, we need rank decompositions of Γ𝑖 = (

[

𝐺𝑖
]

, 𝐵𝑖). We obtain these in three steps. Firstly, we apply
induction to obtain inductive rank decompositions (𝑑𝑖) of Γ𝑖 = (

[

𝐺𝑖
]

, (𝐿𝑖 ∣ 𝑅𝑖)) such that 𝗐𝖽((𝑑𝑖)) ≤
2 ⋅ max{𝗐𝖽(𝑑𝑖), 𝗋𝗄(𝐿𝑖), 𝗋𝗄(𝑅𝑖)}. Secondly, we apply Lemma 6.17 to obtain an inductive rank decomposition
𝑇 ′
2 of Γ′2 = (

[

𝐺2 + 𝐿2 ⋅ 𝐹1 ⋅ 𝐿⊤2
]

, (𝐿2 ∣ 𝑅2 +𝐿2 ⋅ (𝐹1 +𝐹⊤1 ) ⋅𝑃
⊤
2 )) such that𝗐𝖽(𝑇 ′

2) ≤ 𝗐𝖽((𝑑2)). Lastly, weobserve that (𝑅1 ∣ 𝐶) = 𝑅1 ⋅ (𝑃⊤2 ∣ 𝐿⊤2 ) and (𝐿2 ∣ 𝐶⊤) = 𝐿2 ⋅ (𝑃1 ∣ 𝑅⊤1 ). Then we obtain that 𝐵1 = (𝐿1 ∣

𝑅1) ⋅
( 𝟙𝑛 𝟘 𝟘

𝟘 𝑃⊤2 𝐿⊤2

) and𝐵2 = (𝐿2 ∣ 𝑅2+𝐿2 ⋅ (𝐹1+𝐹⊤1 ) ⋅𝑃
⊤
2 ) ⋅

(

𝑃1 𝟘 𝑅⊤1
𝟘 𝟙𝑚 𝟘

), and we can apply Lemma 6.15 to get
inductive rank decompositions 𝑇𝑖 of Γ𝑖 such that 𝗐𝖽(𝑇1) ≤ 𝗐𝖽((𝑑1)) and 𝗐𝖽(𝑇2) ≤ 𝗐𝖽(𝑇 ′

2) ≤ 𝗐𝖽((𝑑2)).
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If 𝑘1, 𝑘2 > 0, then we define (𝑑)∶= (𝑇1—Γ—𝑇2), which is an inductive rank decomposition of Γ because
Γ𝑖 satisfy the conditions in Definition 6.4. If 𝑘1 = 0, then Γ = Γ2 and we can define (𝑑)∶= 𝑇2. Similarly,
if 𝑘2 = 0, then Γ = Γ1 and we can define (𝑑)∶= 𝑇1. In any case, we can compute the width of (𝑑) (if
𝑘𝑖 = 0 then 𝑇𝑖 = () and 𝗐𝖽(𝑇𝑖) = 0) using the inductive hypothesis, Lemma 6.17, Lemma 6.15, the fact that
𝗋𝗄(𝐿) ≥ 𝗋𝗄(𝐿1), 𝗋𝗄(𝑅) ≥ 𝗋𝗄(𝑅2) and 𝑗 ≥ 𝗋𝗄(𝑅1), 𝗋𝗄(𝐿2) because 𝑅1 ∶ 𝑗 → 𝑘1 and 𝐿2 ∶ 𝑗 → 𝑘2.

𝗐𝖽(𝑇 )
∶= max{𝗐𝖽(𝑇1),𝗐𝖽(𝑇2), 𝗋𝗄(𝐿 ∣ 𝑅)}
≤ max{𝗐𝖽((𝑑1)),𝗐𝖽(𝑇 ′

2), 𝗋𝗄(𝐿 ∣ 𝑅)}
≤ max{𝗐𝖽((𝑑1)),𝗐𝖽((𝑑2)), 𝗋𝗄(𝐿 ∣ 𝑅)}
≤ max{𝗐𝖽((𝑑1)),𝗐𝖽((𝑑2)), 𝗋𝗄(𝐿) + 𝗋𝗄(𝑅)}
≤ max{2 ⋅ 𝗐𝖽(𝑑1), 2 ⋅ 𝗋𝗄(𝐿1), 2 ⋅ 𝗋𝗄(𝑅1), 2 ⋅ 𝗐𝖽(𝑑2), 2 ⋅ 𝗋𝗄(𝐿2), 2 ⋅ 𝗋𝗄(𝑅2), 𝗋𝗄(𝐿) + 𝗋𝗄(𝑅)}
≤ 2 ⋅max{𝗐𝖽(𝑑1), 𝗋𝗄(𝐿1), 𝗋𝗄(𝑅1),𝗐𝖽(𝑑2), 𝗋𝗄(𝐿2), 𝗋𝗄(𝑅2), 𝗋𝗄(𝐿), 𝗋𝗄(𝑅)}
≤ 2 ⋅max{𝗐𝖽(𝑑1),𝗐𝖽(𝑑2), 𝑗, 𝗋𝗄(𝐿), 𝗋𝗄(𝑅)}

∶=2 ⋅max{𝗐𝖽(𝑑), 𝗋𝗄(𝐿), 𝗋𝗄(𝑅)}

If 𝑑 = (𝑑1— ⊗ —𝑑2) starts with monoidal product node, then 𝑔 is the monoidal product of two mor-phisms: 𝑔 = 𝑔1 ⊗ 𝑔2, with 𝑔𝑖 =
([

𝐺𝑖
]

, 𝐿𝑖, 𝑅𝑖, 𝑃𝑖,
[

𝐹𝑖
])

∶ 𝑛𝑖 → 𝑚𝑖. By exlicitly computing the monoidal
product, we obtain that [𝐺] = [(

𝐺1 𝟘
𝟘 𝐺2

)], 𝐿 =
(

𝐿1 𝟘
𝟘 𝐿2

), 𝑅 =
(

𝑅1 𝟘
𝟘 𝑅2

), 𝑃 =
(

𝑃1 𝟘
𝟘 𝑃2

) and 𝐹 =
(

𝐹1 𝟘
𝟘 𝐹2

).
By induction, we have inductive rank decompositions (𝑑𝑖) of Γ𝑖∶= (

[

𝐺𝑖
]

, 𝐵𝑖), where 𝐵𝑖 = (𝐿𝑖 ∣ 𝑅𝑖), ofbounded width: 𝗐𝖽((𝑑𝑖)) ≤ 2 ⋅ max{𝗐𝖽(𝑑𝑖), 𝗋𝗄(𝐿𝑖), 𝗋𝗄(𝑅𝑖)}. Let 𝐵1∶= (𝐿1 ∣ 𝟘𝑛2 ∣ 𝑅1 ∣ 𝟘𝑚2
∣ 𝟘𝑘2 ) =

𝐵1 ⋅
( 𝟙𝑛1 𝟘 𝟘 𝟘 𝟘

𝟘 𝟘 𝟙𝑚1 𝟘 𝟘

) and 𝐵2∶= (𝟘𝑛1 ∣ 𝐿2 ∣ 𝟘𝑚1
∣ 𝑅2 ∣ 𝟘𝑘1 ) = 𝐵2 ⋅

( 𝟘 𝟙𝑛2 𝟘 𝟘 𝟘
𝟘 𝟘 𝟘 𝟙𝑚2 𝟘

). By Lemma 6.15, we can
obtain inductive rank decompositions 𝑇𝑖 of Γ𝑖∶= (

[

𝐺𝑖
]

, 𝐵𝑖) such that 𝗐𝖽(𝑇𝑖) ≤ 𝗐𝖽((𝑑𝑖)). If 𝑘1, 𝑘2 > 0,
then we define (𝑑)∶= (𝑇1—Γ—𝑇2), which is an inductive rank decomposition of Γ because Γ𝑖 satisfy theconditions in Definition 6.4. If 𝑘1 = 0, then Γ = Γ2 and we can define(𝑑)∶= 𝑇2. Similarly, if 𝑘2 = 0, then
Γ = Γ1 and we can define(𝑑)∶= 𝑇1. In any case, we can compute the width of(𝑑) (if 𝑘𝑖 = 0 then 𝑇𝑖 = ()and 𝗐𝖽(𝑇𝑖) = 0) using the inductive hypothesis and Lemma 6.15.

𝗐𝖽(𝑇 )
∶= max{𝗐𝖽(𝑇1),𝗐𝖽(𝑇2), 𝗋𝗄(𝐿 ∣ 𝑅)}
≤ max{𝗐𝖽((𝑑1)),𝗐𝖽((𝑑2)), 𝗋𝗄(𝐿 ∣ 𝑅)}
≤ max{𝗐𝖽((𝑑1)),𝗐𝖽((𝑑2)), 𝗋𝗄(𝐿) + 𝗋𝗄(𝑅)}
≤ max{2 ⋅ 𝗐𝖽(𝑑1), 2 ⋅ 𝗋𝗄(𝐿1), 2 ⋅ 𝗋𝗄(𝑅1), 2 ⋅ 𝗐𝖽(𝑑2), 2 ⋅ 𝗋𝗄(𝐿2), 2 ⋅ 𝗋𝗄(𝑅2), 𝗋𝗄(𝐿) + 𝗋𝗄(𝑅)}
≤ 2 ⋅max{𝗐𝖽(𝑑1), 𝗋𝗄(𝐿1), 𝗋𝗄(𝑅1),𝗐𝖽(𝑑2), 𝗋𝗄(𝐿2), 𝗋𝗄(𝑅2), 𝗋𝗄(𝐿), 𝗋𝗄(𝑅)}
≤ 2 ⋅max{𝗐𝖽(𝑑1),𝗐𝖽(𝑑2), 𝗋𝗄(𝐿), 𝗋𝗄(𝑅)}

∶=2 ⋅max{𝗐𝖽(𝑑), 𝗋𝗄(𝐿), 𝗋𝗄(𝑅)}

Propositions 6.10, 6.16 and 6.18 combine to the equivalence of monoidal width and rank width.
Theorem 6.19. Let 𝐺 be a graph and let 𝑔 =

(

[𝐺] , ¡, ¡, ( ), [( )]) be the corresponding morphism in 𝖡𝖦𝗋𝖺𝗉𝗁.
Then, 1

2 ⋅ 𝗋𝗐𝖽(𝐺) ≤ 𝗆𝗐𝖽(𝑔) ≤ 2 ⋅ 𝗋𝗐𝖽(𝐺).
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With this result and Theorem 2.39, we obtain equivalence with clique width.

Corollary 6.20. Clique width is equivalent to monoidal width in 𝖡𝖦𝗋𝖺𝗉𝗁.



Chapter 7

A Monoidal Courcelle-Makowsky Theorem

This chapter unifies the results of previous chapters to obtain a general strategy for proving fixed-parametertractability for problems on monoidal categories. We aim to bring the technique exposed in Section 2.3 forchecking formulae on relational structures to the categorical setting. As outlined in Section 2.3, the fixed-parameter tractability result for relational structures relies on the two fundamental steps below.1. Identifying generators and operations to express relational structures and graphs. The operations havea cost that determines the width of structures.2. Showing a preservation theorem. In fact, the preservation theorems recalled in Section 2.3 are composedof a structural and a computational part.(a) Showing that partial solutions can be combined into solutions for compound structures.(b) Showing that combining partial solutions takes time that is constant in the size of the compoundstructure but depends on its width.Classical examples of this procedure are Courcelle’s theorems for treewidth [Cou90] and cliquewidth [CO00],which we recalled in Sections 2.2 and 2.3.Chapter 3 gives the first step of this procedure for monoidal categories. Depending on the choice ofoperations and their cost, algebraic decompositions of relational structures give their algebraic width. In thesameway, depending on the choice of monoidal category and its weight function, monoidal decompositionsof morphisms give their monoidal width. Once themonoidal category is fixed, the categorical structure givesa canonical choice for the operations: compositions indexed by the objects andmonoidal product. Chapter 4identifies the appropriate categories of relational structures and graphs to derive the operations for tree andclique widths.This chapter identifies the assumptions that correspond to preservation theorems for showing fixed-parameter tractability for problems on monoidal categories. We exemplify this technique for computingcolimits compositionally.

7.1 Fixed-parameter tractability in monoidal categories

This section shows that compositional algorithms can solve functorial problems efficiently on inputs of boun-dedmonoidal width (Theorem 7.6). As for the analogous result for checking formulae on relational structures(Theorem 2.52), this result is a relatively straightforward consequence of its assumptions. In fact, the diffi-cult part of showing fixed-parameter tractability lies in showing a preservation theorem, which Theorem2.52assumes as hypothesis, and we make a similar assumption for Theorem 7.6. Nonetheless, this result is stillinformative as it provides a general strategy for proving fixed-parameter tractability of problems onmonoidalcategories.
89
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The class of problems covered by this result is wider than computing the theory of relational structures.The possible inputs are the morphisms of a fixed monoidal category 𝖢 and, for a morphism 𝑓 ∶ 𝐴 → 𝐵,we seek to compute 𝐒(𝑓 ). We always assume that the input morphism 𝑓 is provided with a monoidal de-composition 𝑑 ∈ 𝐷𝑓 . A divide-and-conquer algorithm requires that the mapping 𝐒 from inputs to solutionsrespects the structure of the monoidal category 𝖢, i.e. it is a monoidal functor. For the divide-and-conqueralgorithm to be efficient, combining solutions must also respect the categorical structure. These assump-tions recast the strategy outlined in Section 2.3, and recalled above, in the categorical setting. The two stepsbelow expand on this strategy to prove fixed-parameter tractability for problems on monoidal categories.1. Find a monoidal category whose morphisms are the inputs to the problem we seek to solve. Althoughwe do not assume that the set of generators is finite, both the examples of structures with sources andgraphs with boundaries are finitely presented props.2. Show that the problem 𝐒 is both structurally and computationally compositional.(a) Show that the mapping 𝐒 from inputs to solutions defines a strong monoidal functor 𝐒∶ 𝖢 → 𝖣, forsome monoidal category 𝖣.(b) Show that combining solutions 𝐒(𝑓1) and 𝐒(𝑓2) with the operations of the monoidal category 𝖣 de-pends linearly on the sizes of 𝑓1 and 𝑓2, but may depend arbitrarily on the cost of the operation usedto combine them.With these assumptions, there is a divide-and-conquer algorithm similar to Algorithm 1 in Section 2.3 thatcomputes solutions compositionally. It runs through the monoidal decomposition given as input startingfrom the leaves and proceeding bottom-up: it computes the solutions on the leaves by brute-force andcombines them according to the operations that appear in the decomposition. Assumption 2b ensures thatthe running time of this algorithm is linear in the size of the monoidal decomposition given as input, butarbitrarily large on its monoidal width.

Definition 7.1. A problem on morphisms of a monoidal category 𝖢 is functorial if the mapping from mor-phisms to solutions is a monoidal functor 𝐒∶ 𝖢 → 𝖣, for some monoidal category 𝖣.
The structural part of the preservation theorems recalled in Section 2.3 ensures that the mapping fromstructures and graphs to their theories is functorial.

Lemma 7.2. Let ∼𝐴,𝐵 be a class of equivalence relations on the sets 𝖢(𝐴,𝐵) of morphisms of a monoidalcategory 𝖢 that respects the categorical structure: if 𝑓 ∼𝐴,𝐵 𝑓 ′ and 𝑔 ∼𝐵,𝐶 𝑔′, then 𝑓 # 𝑔 ∼𝐴,𝐶 𝑓 ′ # 𝑔′; and,if 𝑓 ∼𝐴,𝐵 𝑓 ′ and 𝑔 ∼𝐶,𝐷 𝑔′, then 𝑓 ⊗ 𝑔 ∼𝐴⊗𝐶,𝐵⊗𝐷 𝑓 ′ ⊗ 𝑔′. Then, quotienting the sets of morphisms of 𝖢
by these equivalence relations gives a monoidal category 𝖢∕ ∼ and a functor𝐐∶ 𝖢 → 𝖢∕ ∼.
Proof. This is a standard result. See, for example [Mac78, Section II.8].
Example 7.3. Recall from Section 4.1 that relational structures with 𝑛 constants can be seen as morphisms
𝑛 → 0 in the category of cospans of relational structures 𝗌𝖲𝗍𝗋𝗎𝖼𝗍𝜏 . This monoidal category is equivalent tothe finitely presented prop 𝗌𝖥𝗋𝗈𝖻𝜏 . In Section 4.3, morphisms 𝑛→ 0 in the category𝖬𝖦𝗋𝖺𝗉𝗁 are interpretedas graphs with 𝑛 labels. The monoidal category𝖬𝖦𝗋𝖺𝗉𝗁 is equivalent to the finitely presented prop 𝖡𝖦𝗋𝖺𝗉𝗁.With these interpretations formorphisms in 𝗌𝖥𝗋𝗈𝖻𝜏 and𝖡𝖦𝗋𝖺𝗉𝗁 inmind, we define logical equivalence formorphisms in these two categories. Twomorphisms 𝑔 = 𝑐 ∶ 𝑚→ 𝐺 ← 𝑛 ∶𝑑 and 𝑔′ = 𝑐′ ∶ 𝑚→ 𝐺′ ← 𝑛 ∶𝑑′in𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗ areMSO logically equivalent when the corresponding structures with𝑚+𝑛 constants,
(𝐺, [𝑐, 𝑑]) and (𝐺′, [𝑐′, 𝑑′]), areMSO logically equivalent. Similarly, twomorphisms ([𝐺] , 𝐿, 𝑅, 𝑃 , [𝑆])∶ 𝑚→
𝑛 and ([

𝐺′] , 𝐿′, 𝑅′, 𝑃 , [𝑆]
)

∶ 𝑚 → 𝑛 in 𝖬𝖦𝗋𝖺𝗉𝗁 are MSO logically equivalent when their corresponding
𝑚 + 𝑛-labelled graphs, (𝐺, (𝐿 ∣ 𝑅)) and (𝐺′, (𝐿′ ∣ 𝑅′)), are MSO logically equivalent.We can now apply the preservation theorems recalled in Section 2.3 to obtain that the operations in themonoidal categories 𝗌𝖥𝗋𝗈𝖻𝜏 and 𝖡𝖦𝗋𝖺𝗉𝗁 preserve logical equivalence. By the Feferman-Vaught-Mostowski(Theorem 2.59) and the Courcelle-Kanté (Theorem 2.60) preservation theorems, MSO logical equivalence
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respects compositions and monoidal product in the monoidal categories 𝗌𝖥𝗋𝗈𝖻𝜏 and 𝖡𝖦𝗋𝖺𝗉𝗁. More in de-tail, preservation by the disjoint union of relational structures corresponds to preservation by the monoidalproduct in 𝗌𝖥𝗋𝗈𝖻𝜏 , while preservation by the disjoint union and fuse operations together gives preservationby compositions in 𝗌𝖥𝗋𝗈𝖻𝜏 . Similarly, preservation by disjoint union of labelled graphs gives preservation bymonoidal product in 𝖡𝖦𝗋𝖺𝗉𝗁, while preservation by disjoint union, edge creation and bilinear product givespreservation by compositions in 𝖡𝖦𝗋𝖺𝗉𝗁.These considerations show that logical equivalence respects the structure of both monoidal categories
𝗌𝖥𝗋𝗈𝖻𝜏 and 𝖡𝖦𝗋𝖺𝗉𝗁, and we can apply Lemma 7.2 to obtain that MSO logical equivalence defines quotientcategories 𝗌𝖥𝗋𝗈𝖻𝜏∕ ≡𝑀𝑆𝑂 and 𝖡𝖦𝗋𝖺𝗉𝗁∕ ≡𝑀𝑆𝑂, and monoidal functors 𝐓∶ 𝗌𝖥𝗋𝗈𝖻𝜏 → 𝗌𝖥𝗋𝗈𝖻𝜏∕ ≡𝑀𝑆𝑂 and
𝐑∶ 𝖡𝖦𝗋𝖺𝗉𝗁 → 𝖡𝖦𝗋𝖺𝗉𝗁∕ ≡𝑀𝑆𝑂.

Asmentioned above, functorial problems canbe solvedby divide-and-conquer algorithms that go throughthe monoidal decomposition given as input, starting from the leaves. For a problem to be functorial it is
Algorithm 2:𝖬𝗈𝗇𝗈𝗂𝖽𝖺𝗅𝖲𝗈𝗅𝗏𝖾

Data: a monoidal decomposition 𝑑 for a morphism 𝑓
Result: the value of 𝐒(𝑓 )
if 𝑑 = (𝐺) thencompute 𝑠∶= 𝐒(𝑓 ) by brute force
else if 𝑑 = (𝑑1— #𝐶 —𝑑2) thencompute 𝑠1∶=𝖬𝗈𝗇𝗈𝗂𝖽𝖺𝗅𝖲𝗈𝗅𝗏𝖾(𝑑1)compute 𝑠2∶=𝖬𝗈𝗇𝗈𝗂𝖽𝖺𝗅𝖲𝗈𝗅𝗏𝖾(𝑑2)compute 𝑠∶= 𝑠1 #𝐒(𝐶) 𝑠2
else if 𝑑 = (𝑑1—⊗—𝑑2) thencompute 𝑠1∶=𝖬𝗈𝗇𝗈𝗂𝖽𝖺𝗅𝖲𝗈𝗅𝗏𝖾(𝑑1)compute 𝑠2∶=𝖬𝗈𝗇𝗈𝗂𝖽𝖺𝗅𝖲𝗈𝗅𝗏𝖾(𝑑2)compute 𝑠∶= 𝑠1 ⊗ 𝑠2return 𝑠

not necessary that the generators of 𝖢 are finite. However, in the case of computing theories of relationalstructures, finiteness is a necessary assumption. Algorithm 1 relies on precomputing all the solutions on thegenerators and a table to combine them. This is possible if the generators and the reduction sets of the for-mulae are finite. We use a slightly different strategy: Algorithm 2 computes the solutions on the generatorsas needed.The preservation theorems, Theorems 2.59 and 2.60, in Section 2.3 have a second computational part.They show that the theories of structures and graphs can be composed in time that is constant in the sizeof the input. The dependency on the cost of the operation can be arbitrarily large because, in the class ofinputs of bounded monoidal width, this cost is also bounded.
Definition 7.4. An algorithm that computes the solution 𝐒(𝑓 ) of a functorial problem on amonoidal category
𝖢 with weight function 𝗐∶  → ℕ is compositional if there is some function 𝑐 ∶ ℕ → ℕ such that:1. computing 𝐒(𝑓 ) takes (𝑐(𝗐(𝑓 )));2. for 𝑓 ∶ 𝐴 → 𝐶 and 𝑔∶ 𝐶 → 𝐵 in𝖢, and given 𝑠 = 𝐒(𝑓 ) and 𝑡 = 𝐒(𝑔), computing the composition 𝑠#𝐒(𝐶) 𝑡along the object 𝐒(𝐶) in 𝖣 takes (𝑐(𝗐(𝐶)));3. for 𝑓 and 𝑔 in 𝖢, and given 𝑠 = 𝐒(𝑓 ) and 𝑡 = 𝐒(𝑔), computing the monoidal product 𝑠 ⊗ 𝑡 in 𝖣 takes

(𝑐(0)).
For the problem of checking formulae on structures and graphs, having effectively smooth operationsimplies having a compositional algorithm.
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Example 7.5. Computing the logical equivalence classes of graphs and relational structures is equivalent tocomputing their theories. When the operations are effectively smooth, the theories can be combined effi-ciently with a look-up table (Definition 2.51). The look-up table is precomputed in finite time that is constantin the size of the input, and its size also does not depend on the input, so it can be accessed in constant time.Constant time is less than linear in the input size and the conditions in Definition 7.4 are satisfied.

Denote with 𝖢𝑘(𝐴,𝐵) the set of morphisms 𝐴 → 𝐵 in 𝖢 of monoidal width at most 𝑘 together with awitness decomposition 𝑑 ∈ 𝐷𝑓 of width at most 𝑘.
𝖢𝑘(𝐴,𝐵)∶= {(𝑓, 𝑑) ∶ 𝑓 ∈ 𝖢(𝐴,𝐵) and 𝑑 ∈ 𝐷𝑓 and 𝗐𝖽(𝑑) ≤ 𝑘}

On this set, when Algorithm 2 is compositional and the input is provided with a monoidal decomposition,the algorithm runs in time that is linear in the size of the input.
Theorem 7.6. Computing a functorial problem 𝐒 on 𝖢𝑘(𝐴,𝐵) with a compositional algorithm is linear in
𝗌𝗂𝗓𝖾(𝑑). Explicitly, given an optimal monoidal decomposition of 𝑓 , computing 𝐒(𝑓 ) takes(𝑐(𝑘) ⋅ 𝗌𝗂𝗓𝖾(𝑑)), forsome 𝑐 ∶ ℕ → ℕ.
Proof. Let 𝑑 ∈ 𝐷𝑓 be a monoidal decomposition of a morphism 𝑓 ∶ 𝐴 → 𝐵 with 𝗐𝖽(𝑑) ≤ 𝑘. We show byinduction on 𝑑 that running Algorithm 2 takes (𝑐(𝑘) ⋅ 𝗌𝗂𝗓𝖾(𝑑)).Suppose that the decomposition is a leaf, 𝑑 = (𝑓 ). Then, the weight of 𝑓 is bounded by 𝑘, and thesize of the decomposition is 1. By hypothesis, 𝗐(𝑓 ) ∶=𝗐𝖽(𝑑) ≤ 𝑘, and computing 𝐒(𝑓 ) takes (𝑐(𝗐(𝑓 ))) =
(𝑐(𝑘) ⋅ 1) by Assumption 1.Suppose that the first node is a composition, 𝑑 = (𝑑1— #𝐶 —𝑑2). Then, the widths of 𝑑1 and 𝑑2, andthe weight of 𝐶 are bounded by 𝑘 because the width of 𝑑 is: 𝗐𝖽(𝑑)∶= max{𝗐𝖽(𝑑1),𝗐(𝐶),𝗐𝖽(𝑑2)} ≤ 𝑘 byhypothesis. We apply Assumption 2 and the induction hypothesis to bound the time complexity of computing
𝐒(𝑓 ) as the composition 𝐒(𝑓1) #𝐶 𝐒(𝑓2) in 𝖣.

(𝑐(𝗐(𝐶))) + (𝑐(𝑘) ⋅ 𝗌𝗂𝗓𝖾(𝑑1)) + (𝑐(𝑘) ⋅ 𝗌𝗂𝗓𝖾(𝑑2))
= (𝑐(𝑘) ⋅ (𝗌𝗂𝗓𝖾(𝑑1) + 1 + 𝗌𝗂𝗓𝖾(𝑑2)))
= (𝑐(𝑘) ⋅ 𝗌𝗂𝗓𝖾(𝑑))

Suppose that the first node is a monoidal product, 𝑑 = (𝑑1— ⊗ —𝑑2). Then, the widths of 𝑑1 and
𝑑2 are bounded by 𝑘 because the width of 𝑑 is: 𝗐𝖽(𝑑)∶= max{𝗐𝖽(𝑑1),𝗐𝖽(𝑑2)} ≤ 𝑘 by hypothesis. Weapply Assumption 3 and the induction hypothesis to calculate the time complexity of computing 𝐒(𝐹 ) as themonoidal product 𝐒(𝑓1)⊗ 𝐒(𝑓2).

(𝑐(0)) + (𝑐(𝑘) ⋅ 𝗌𝗂𝗓𝖾(𝑑1)) + (𝑐(𝑘) ⋅ 𝗌𝗂𝗓𝖾(𝑑2))
= (𝑐(𝑘) ⋅ (𝗌𝗂𝗓𝖾(𝑑1) + 1 + 𝗌𝗂𝗓𝖾(𝑑2)))
= (𝑐(𝑘) ⋅ 𝗌𝗂𝗓𝖾(𝑑))

7.2 Computing colimits compositionally
This section considers the problem of computing finite colimits in a category 𝖤 that admits them. This is afunctorial problem [RSW08] and we show that it satisfies the assumptions of Theorem 7.6. Diagrams, seenas graph morphisms to the graph underlying 𝖤, are the objects of a category 𝖣𝗂𝖺𝗀(𝖤) with colimits. Thereis a functor that takes a diagram as inputs and returns and object of 𝖤, its colimit. However, to make thisproblem compositional, we need to lift this functor to discrete cospans.
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The graph |𝖤|underlying the category𝖤 is an object of the category𝖦𝗋𝖺𝗉𝗁∞ of possibly infinite graphs andtheir homomorphisms. We consider the slice category𝖦𝗋𝖺𝗉𝗁∞∕|𝖤|, where objects are diagrams 𝑑 ∶ 𝐺 → |𝖤|and morphisms are commutative triangles. We restrict to finite diagrams, diagrams 𝑑 ∶ 𝐺 → |𝖤| where thegraph 𝐺 is finite.

Definition 7.7. The category 𝖣𝗂𝖺𝗀(𝖤) of diagrams in 𝖤 is the full subcategory of 𝖦𝗋𝖺𝗉𝗁∞∕|𝖤| on finite dia-grams.
There is a functor colim∶ 𝖣𝗂𝖺𝗀(𝖤) → 𝖤 that assigns to each diagram 𝑑 an object in 𝖤 that is its colimit1.This functor is unique up to isomorphism. In order to decompose diagrams, we consider discrete cospans ofthem. A diagram 𝑑 ∶ 𝐺 → |𝖤| is discrete if the graph 𝐺 is discrete.

Definition 7.8. The category 𝖢𝖣𝗂𝖺𝗀(𝖤) is the full subcategory of 𝖢𝗈𝗌𝗉𝖺𝗇(𝖣𝗂𝖺𝗀(𝖤)) on discrete cospans ofdiagrams in 𝖤.
Explicitly, objects are graph morphisms𝑋 → |𝖤|, i.e. functions𝑋 → 𝖮𝖻𝗃(𝖤) and morphisms are commu-tative diagrams of graph homomorphisms.

𝐺

𝑋 |𝖤| 𝑌

𝑑
𝑣0

𝑥

𝑣1

𝑦

Composition is given by pushout and monoidal product by the coproduct.
Proposition 7.9 ([RSW05; RSW08]). The category 𝖢𝖣𝗂𝖺𝗀(𝖤) is equivalent to free strict symmetric monoidalcategory on the monoidal signature composed of the generators of a Frobenius monoid (Figure 4.1) for everyvertex of |𝖤| and all the edges of |𝖤|, quotiented by the axioms of Frobenius monoids. These generators andequations are in Figure 7.1.

𝐴
𝐴

𝐴
𝐴 𝐴

𝐴

𝐴
𝐴 𝑓𝐴 𝐵

for all objects 𝐴 and all morphisms 𝑓 ∶ 𝐴 → 𝐵 in 𝖤

= = =

= = =

= =

Figure 7.1
1Note that we are using the axiom of choice in this definition.
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Theorem 7.10 ([RSW08]). There is a monoidal functor 𝐂𝐨𝐥𝐢𝐦∶ 𝖢𝖣𝗂𝖺𝗀 → 𝖢𝗈𝗌𝗉𝖺𝗇(𝖤) from discrete cospansof diagrams to cospans in 𝖤 that extends the colimit functor colim∶ 𝖣𝗂𝖺𝗀(𝖤) → 𝖤.

The functor𝐂𝐨𝐥𝐢𝐦makes the problemof computing colimits functorial. For some choices of the category
𝖤, we can show that there is a compositional algorithm for computing colimits.
Colimits in 𝖥𝗂𝗇𝖲𝖾𝗍. Suppose that we are working with a representation of finite sets that allows computa-tions of disjoint unions in constant time 𝑐0. Computing the colimit of a finite diagram 𝑑 ∶ 𝐺 → |𝖥𝗂𝗇𝖲𝖾𝗍| bybrute force means to take the disjoint union of the sets 𝑑(𝑣) for 𝑣 ∈ 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝐺) and then quotienting by theequivalence relation given by the edges of 𝐺.

colim 𝑑 =

(

⨆

𝑣∈𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝐺)
𝑑(𝑣)

)

/

∼

The equivalence relation ∼ is the transitive closure of a relation ∼0. Two elements in this union, 𝑎, 𝑏 ∈
⨆

𝑣∈𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝐺) 𝑑(𝑣), are related, 𝑎 ∼0 𝑏, if and only if there are edges 𝑒1 = (𝑢, 𝑣1) and 𝑒2 = (𝑢, 𝑣2) of 𝐺 andan element 𝑦 ∈ 𝑑(𝑢) that maps to 𝑎 and 𝑏: 𝑑(𝑒1)(𝑦) = 𝑎 and 𝑑(𝑒2)(𝑦) = 𝑏. We can encode these relationsas square boolean matrices 𝐸0 and 𝐸 whose dimension is the sum of the cardinalities of the images of thefunctions in the diagram: ∑𝑒∈𝖾𝖽𝗀𝖾𝗌(𝐺) |𝗂𝗆(𝑑(𝑒))|. As we do not have further information on the shape of the
colimit, we can bound this size with 𝑛 = ∑

𝑣∈𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝐺) |𝑑(𝑣)|. The matrix 𝐸0 can be computed in(𝑛2) time,it is symmetric and has all the diagonal elements equal to 1. This means that it represents a symmetric andreflexive relation. Thematrix𝐸 needs to be computed from𝐸0 by transitive closure. A square booleanmatrix
𝐴 represents a transitive relation if and only if 𝐴 = 𝐴 ⋅ 𝐴. Then, computing 𝐸 from 𝐸0 means computing
𝐸𝑘+1 = 𝐸𝑘 ⋅𝐸𝑘 until convergence: 𝐸𝑘+1 = 𝐸𝑘. This procedure terminates in at most 𝑛2 steps and each steptakes (𝑛3) for matrix multiplication, which gives a running time of (𝑛5).Cospans compose by pushout. To show Assumption 2, we need to bound the computational cost ofcomputing pushouts in 𝖲𝖾𝗍. The pushout 𝑈 +𝑌 𝑉 of 𝑢∶ 𝑌 → 𝑈 and 𝑣∶ 𝑌 → 𝑉 in 𝖲𝖾𝗍 is their disjoint union
𝑈 + 𝑉 quotiented by the equivalence relation generated by 𝑢 and 𝑣. As for generic colimits, 𝑎 ∼0 𝑏 if thereis a 𝑦 ∈ 𝑌 such that 𝑢(𝑦) = 𝑎 and 𝑣(𝑦) = 𝑏. The relation ∼0 can be easily made symmetric and reflexive,while computing its transitive closure is a bit more computationally involved. We record the relation ∼0 in asquare boolean matrix 𝐸0, but, this time, its size can be bound by 2 ⋅ |𝑌 | because |𝑌 | bounds the numberof elements in the images of both 𝑢 and 𝑣. By the same reasoning as above, we can compute its transitiveclosure in (|𝑌 |5). With the computation of the disjoint union, this makes (|𝑌 |5 + 𝑐0) = (|𝑌 |5 and wehave shown Assumption 2.As just mentioned, computing disjoint unions takes(𝑐0), which satisfies Assumption 3 about computingmonoidal products.We have shown that colimits in 𝖥𝗂𝗇𝖲𝖾𝗍 can be computed compositionally and Theorem 7.6 applies to thisproblem.
Colimits in presheaves. Computing the colimit of a finite diagram in a (co)presheaf category [𝖢, 𝖥𝗂𝗇𝖲𝖾𝗍]means computing the same colimit in 𝖥𝗂𝗇𝖲𝖾𝗍 for each object𝐴 in𝖢 and computing the corresponding uniquemorphism for everymorphism 𝑓 ∶ 𝐴→ 𝐵 in𝖢. When the category𝖢 is finite, this can be done in finite time.We assume that this is the case and let 𝑠 be the maximum between the number of objects and the numberof morphisms.Consider a diagram 𝑑 ∶ 𝐺 → |[𝖢, 𝖥𝗂𝗇𝖲𝖾𝗍]| in the presheaf category [𝖢, 𝖥𝗂𝗇𝖲𝖾𝗍]. This diagram determinesfunctors 𝐃𝑣∶= 𝑑(𝑣), for every vertex 𝑣 of 𝐺, and natural transformations 𝛾𝑒∶= 𝑑(𝑒), for every edge 𝑒 in 𝐺.For every object 𝐴 in 𝖢, the diagram 𝑑 in [𝖢, 𝖥𝗂𝗇𝖲𝖾𝗍] determines a diagram 𝑑𝐴 ∶ 𝐺 → |𝖥𝗂𝗇𝖲𝖾𝗍| of the same
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shape in 𝖥𝗂𝗇𝖲𝖾𝗍, defined on vertices by 𝑑𝐴(𝑣)∶= 𝐃𝑣(𝐴) and on edges by 𝑑𝐴(𝑒)∶= 𝛾𝑒(𝐴). For a functor𝐅∶ 𝖢 →
𝖥𝗂𝗇𝖲𝖾𝗍, we let its cardinality to be themaximumcardinality of the sets in its image, |𝐅|∶= max𝐴∈𝖮𝖻𝗃(𝖢) |𝐅(𝐴)|.The colimit of 𝑑 is computed component-wise: for every object 𝐴 of 𝖢, we compute the colimit in
𝖥𝗂𝗇𝖲𝖾𝗍 of the diagram 𝑑𝐴, and, for every morphism 𝑓 ∶ 𝐴 → 𝐵 in 𝖢, we compute the unique colimit func-tion colim 𝑓 ∶ colim 𝑑𝐴 → colim 𝑑𝐵 . The time complexity of computing colim 𝑑𝐴 for each object 𝐴 is
(𝑛5𝐴), where 𝑛𝐴∶= ∑

𝑣∈𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌𝐺 |𝑑𝐴(𝑣)|. As a consequence, computing all these colimits takes (𝑠 ⋅ 𝑛5),where 𝑛∶= ∑

𝑣∈𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌𝐺 |𝐃𝑣|. The computation of the corresponding morphisms is irrelevant as it is lin-ear in 𝑠 ⋅ 𝑛. When computing colim 𝑑, we recorded all the injections 𝜄𝐴𝑣 ∶ 𝑑𝐴(𝑣) → colim 𝑑𝐴, Then, foreach object 𝐴 of 𝖢 and each vertex 𝑣 of 𝐺, we define the colimit of 𝑓 thanks to the universal property:
colim 𝑓 (𝜄𝐴𝑣 (𝑥))∶= 𝜄

𝐵
𝑣 (𝐃𝑣𝑓 (𝑥)). The image on some elements in colim 𝑑𝐴 is computed more than once, but,thanks to the universal property, all these values coincide and we have computed colim 𝑓 going through atmost 𝑠 ⋅ 𝑛 elements.For compositions in 𝖢𝗈𝗌𝗉𝖺𝗇([𝖢, 𝖥𝗂𝗇𝖲𝖾𝗍]), we need to compute pushouts in [𝖢, 𝖥𝗂𝗇𝖲𝖾𝗍]. As explainedabove, we can reuse the complexity bounds for 𝖥𝗂𝗇𝖲𝖾𝗍 and deduce that the time complexity of computingthe pushout 𝐔 +𝐘 𝐕 of 𝐔 and 𝐕 along 𝐘 is (𝑠 ⋅ |𝐘|5). Similarly, monoidal products in 𝖢𝗈𝗌𝗉𝖺𝗇([𝖢, 𝖥𝗂𝗇𝖲𝖾𝗍])correspond to coproducts in [𝖢, 𝖥𝗂𝗇𝖲𝖾𝗍], and computing 𝐔 + 𝐕 takes (𝑠 ⋅ 𝑐0).





Chapter 8

Conclusions

This thesis has defined monoidal width, a structural complexity measure of morphisms in monoidal cate-gories based on the corresponding notion of monoidal decomposition. This interpretation is validated bythe results that show that monoidal width, in the monoidal category of graphs with vertex interfaces, isequivalent to tree width, and, in the monoidal category of graphs with edge interfaces, is equivalent toclique width. We have concluded with a fixed-parameter tractability result. Functorial problems that admita compositional algorithm can be computed in linear time on morphisms of bounded monoidal width. Anexample of such a problem is computing colimits in presheaf categories.
Futurework Monoidal categories often represent process theories or semantic universes for programminglanguages. Applications of monoidal width to such monoidal categories remain to be explored. There maybe problems on these monoidal categories that satisfy the assumptions for the monoidal fixed-parametertractability result and, for these problems, wewould obtain that they are tractable onmorphisms of boundedmonoidal width.This work does not deal with the problem of finding efficient decompositions in general, which is, indeed,an important problem. We do not expect to find a general purpose tractable algorithm for finding efficientmonoidal decompositions, as that would particularise to one for clique decompositions and it is still an openproblemwhether graphs of bounded clique width can be recognised in polynomial time [Oum08]. However,this problem could be studied in some finitely presented props. The results about categories with biprod-ucts in Section 3.3 are a first step in this direction as they construct, given unique⊗-decompositions of theobjects, minimal monoidal decompositions of morphisms.Monoidal width can capture tree width and clique width by changing the categorical algebra that de-scribes graphs. Twin width [Bon+21] is a recently defined graph width measure which is similar in flavour toclique width but stronger, in the sense that bounded twin width graphs must have bounded clique width butvice versa does not hold. Future work could look for a categorical algebra to capture twin width.Game comonads [ADW17] capture decompositions with coalgebras. On the other hand, produoidal cate-gories give the algebra for decompositions in monoidal categories [EHR23]. These lines of work suggest thatthere might be some categorical structure that captures monoidal decompositions as well.
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